Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-bcmtx Total loading time: 0.282 Render date: 2021-04-20T02:21:55.075Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Sb-rich nanoinclusions in an AlGaAsSb metamaterial

Published online by Cambridge University Press:  29 January 2019

Nikolay A. Bert
Affiliation:
Ioffe Institute, 26 Polytekhnicheskaya ul., Saint Petersburg194021, Russia
Vladimir V. Chaldyshev
Affiliation:
Ioffe Institute, 26 Polytekhnicheskaya ul., Saint Petersburg194021, Russia
Nikolay A. Cherkashin
Affiliation:
CEMES, CNRS and Université de Toulouse, 29 rue Jeanne Marvig, 31055Toulouse Cedex 4, France
Vladimir N. Nevedomskiy
Affiliation:
Ioffe Institute, 26 Polytekhnicheskaya ul., Saint Petersburg194021, Russia
Valery V. Preobrazhenskii
Affiliation:
Institute of Semiconductor Physics, 13 ac. Lavrentiev ave., Novosibirsk630090, Russia
Michael A. Putyato
Affiliation:
Institute of Semiconductor Physics, 13 ac. Lavrentiev ave., Novosibirsk630090, Russia
Boris R. Semyagin
Affiliation:
Institute of Semiconductor Physics, 13 ac. Lavrentiev ave., Novosibirsk630090, Russia
Vitaliy I. Ushanov
Affiliation:
Ioffe Institute, 26 Polytekhnicheskaya ul., Saint Petersburg194021, Russia CEMES, CNRS and Université de Toulouse, 29 rue Jeanne Marvig, 31055Toulouse Cedex 4, France Institute of Semiconductor Physics, 13 ac. Lavrentiev ave., Novosibirsk630090, Russia
Maria A. Yagovkina
Affiliation:
Ioffe Institute, 26 Polytekhnicheskaya ul., Saint Petersburg194021, Russia
Corresponding
E-mail address:
Get access

Abstract

We studied the microstructure of Al0.28Ga0.72As0.972Sb0.028 metamaterials containing a developed array of AsSb nanoinclusions. The AlGaAsSb films were grown by low-temperature molecular-beam epitaxy followed by high-temperature annealing at 750°C. The process resulted in an array of self-organized AsSb nanonclusions with an average diameter of 15 nm. The volume filling factor was about 0.003. Using transmission electron microscopy and x-ray diffraction we showed that the nanoinclusions have A7-type rhombohedral atomic structure with the following orientation in the matrix (0003)p || {111}m and [-2110]p || 〈220〉m, where p and m indices indicate the AsSb precipitate and AlGaAsSb matrix, correspondingly. The nanoinclusions appeared to be strongly enriched by antimony (more than 90 atomic %), whereas the Sb content in the AlGaAsSb matrix was 2.8 atomic %. The strong enrichment of the inclusion with Sb resulted from the local thermodynamic equilibrium between the solid AlGaAsSb matrix and AsSb inclusions which became liquid at a formation temperature of 750°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Atwater, H.A. and Polman, A., Nat. Mater. 9, 205 (2010).CrossRefGoogle Scholar
Beak‐Hyun, K., Chang‐Hee, C., Jin‐Soo, M., Min‐Ki, K., Tae‐Young, P., Su, K.J., Chisu, B.C., Jongmin, L., and Seong‐Ju, P., Adv. Mater. 20, 3100 (2008).Google Scholar
Melloch, M.R., Mahalingam, K., Otsuka, N., Woodall, J.M., and Warren, A.C., J. Cryst. Growth 111, 39 (1991).CrossRefGoogle Scholar
Kaminska, M., Liliental‐Weber, Z., Weber, E.R., George, T., Kortright, J.B., Smith, F.W., Tsaur, B., and Calawa, A.R., Appl. Phys. Lett. 54, 1881 (1989).CrossRefGoogle Scholar
Bert, N. A., Veinger, A.I., Vilisova, M.D., Goloshchapov, S.I., Ivonin, I. V., Kozyrev, S. V., Kunitsyn, A.E., Lavrent’eva, L.G., Lubyshev, D.I., Preobrazhenskii, V. V., Semyagin, B.R., Tret’yakov, V. V., Chaldyshev, V. V., and Yakubenya, M.P., Phys. Solid State 35, 1289 (1993).Google Scholar
Gupta, S., Frankel, M.Y., Valdmanis, J.A., Whitaker, J.F., Mourou, G.A., Smith, F.W., and Calawa, A.R., Appl. Phys. Lett. 59, 3276 (1991).CrossRefGoogle Scholar
Melloch, M.R., Woodall, J.M., Harmon, E.S., Otsuka, N., Pollak, F.H., Nolte, D.D., Feenstra, R.M., and Lutz, M.A., Annu. Rev. Mater. Sci. 25, 547 (1995).CrossRefGoogle Scholar
Pastor, A.A., V Prokhorova, U., Serdobintsev, P.Y., V Chaldyshev, V., and Yagovkina, M.A., Semiconductors 47, 1137 (2013).CrossRefGoogle Scholar
Ushanov, V.I., V Chaldyshev, V., Il’inskaya, N.D., Lebedeva, N.M., Yagovkina, M.A., V Preobrazhenskii, V., Putyato, M.A., and Semyagin, B.R., Phys. Solid State 56, 1952 (2014).CrossRefGoogle Scholar
Ushanov, V. I., Chaldyshev, V. V., Preobrazhenskii, V. V., Putyato, M. A., and Semyagin, B. R., Semiconductors, 50, 1596 (2016).CrossRefGoogle Scholar
Bert, N.A., V Chaldyshev, V., Suvorova, A.A., V Preobrazhenskii, V., Putyato, M.A., Semyagin, B.R., and Werner, P., Appl. Phys. Lett. 74, 1588 (1999).CrossRefGoogle Scholar
Chaldyshev, V. V., Bert, N.A., Romanov, A.E., Suvorova, A.A., Kolesnikova, A.L., Preobrazhenskii, V. V., Putyato, M.A., Semyagin, B.R., Werner, P., Zakharov, N.D., and Claverie, A., Appl. Phys. Lett. 80, 377 (2002).CrossRefGoogle Scholar
Chaldyshev, V. V., Kolesnikova, A.L., Bert, N.A., and Romanov, A.E., J. Appl. Phys. 97, (2005).CrossRefGoogle Scholar
Chaldyshev, V. V., Bert, N.A., Kolesnikova, A.L., and Romanov, A.E., Phys. Rev. B 79, 233304 (2009).CrossRefGoogle Scholar
Vasyukov, D.A., Baidakova, M. V., Chaldyshev, V. V., Suvorova, A.A., Preobrazhenskii, V. V., Putyato, M.A., and Semyagin, B.R., J. Phys. D. Appl. Phys. 34, A15 (2001).CrossRefGoogle Scholar
Liu, X., Prasad, A., Nishio, J., Weber, E.R., Liliental‐Weber, Z., and Walukiewicz, W., Appl. Phys. Lett. 67, 279 (1995).CrossRefGoogle Scholar
Martin, G.M., Appl. Phys. Lett. 39, 747 (1981).CrossRefGoogle Scholar
Adachi, S., Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons Ltd., 2009)CrossRefGoogle Scholar
Biryulin, Y.F., Vul’, S.P., Chaldyshev, V. V., and Shmartsev, Y. V., Sov. Phys. Semicond. 17, 65 (1983).Google Scholar
Hÿtch, M.J., Snoeck, E., and Kilaas, R., Ultramicroscopy 74, 131 (1998).CrossRefGoogle Scholar
Cherkashin, N., Reboh, S., Hÿtch, M.J., Claverie, A., V Preobrazhenskii, V., Putyato, M.A., Semyagin, B.R., and V Chaldyshev, V., Appl. Phys. Lett. 102, 173115 (2013).CrossRefGoogle Scholar
Hüe, F., Johnson, C.L., Lartigue-Korinek, S., Wang, G., Buseck, P.R., and Hÿtch, M.J., J. Electron Microsc. (Tokyo). 54, 181 (2005).CrossRefGoogle Scholar
Bert, N.A., Chaldyshev, V. V., Musikhin, Y.G., Suvorova, A.A., Preobrazhenskii, V. V., Putyato, M.A., Semyagin, B.R., and Werner, P., Appl. Phys. Lett. 74, 1442 (1999).CrossRefGoogle Scholar
Chaldyshev, V. V., Bert, N.A., Musikhin, Y.G., Suvorova, A.A., Preobrazhenskii, V. V., Putyato, M.A., Semyagin, B.R., Werner, P., and Gösele, U., Appl. Phys. Lett. 79, 1294 (2001).CrossRefGoogle Scholar
Ansara, I., Chatillon, C., Lukas, H.L., Nishizawa, T., Ohtani, H., Ishida, K., Hillert, M., Sundman, B., Argent, B.B., Watson, A., Chart, T.G., and Anderson, T., Calphad 18, 177 (1994).CrossRefGoogle Scholar
Gödecke, T., Haalboom, T., and Sommer, F., J. Phase Equilibria 19, 572 (1998).CrossRefGoogle Scholar
Claverie, A. and Liliental-Weber, Z., Philos. Mag. A 65, 981 (1992).CrossRefGoogle Scholar
Bert, N.A., Chaldyshev, V.V., Semiconductors, 30, 988 (1996).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 16 *
View data table for this chart

* Views captured on Cambridge Core between 29th January 2019 - 20th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Sb-rich nanoinclusions in an AlGaAsSb metamaterial
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Sb-rich nanoinclusions in an AlGaAsSb metamaterial
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Sb-rich nanoinclusions in an AlGaAsSb metamaterial
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *