Skip to main content Accessibility help
×
Home

Article contents

Low Temperature Magnetotransport Properties of Polycrystalline Ca3Co4O9

Published online by Cambridge University Press:  23 January 2017

David J. Magginetti
Affiliation:
Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
Shrikant Saini
Affiliation:
Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
Ashutosh Tiwari
Affiliation:
Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
Corresponding
E-mail address:
Get access

Abstract

Ca3Co4O9 (CCO) is a promising material for thermoelectric applications; however, this layered oxide shows a large number of physical features that complicate understanding and systematically improving its properties. A significant component of CCO’s behavior is its magnetotransport properties, particularly in the low temperature region where an incommensurate spin density wave affects its band structure. In order to improve understanding in this area, we perform low temperature magnetoresistance (MR) measurements on a bulk CCO sample. Field-less resistivity measurements confirm the conventional behavior of our sample, with a metal-to-insulator transition at approximately 70 K, and a shoulder indicating ferrimagnetism at 14 K. Resistivity vs. temperature under applied magnetic field show significant MR below around 35 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Wang, Y., Sui, Y., Cheng, J., Wang, X., Su, W., Liu, X., and Fan, H. J.. Phys. Chem. C 114, 5174 (2010)CrossRef
Tian, R., Donelson, R., Ling, C. D., Blanchard, P. E. R., Zhang, T., Chu, D., Tan, T. T., and Li, S., J. Phys. Chem. C 117, 13382 (2013)CrossRef
Tang, G. D., Wang, Z. H., Xu, X. N., Qiu, L., and Du, Y. W., J. Appl. Phys. 107, 053715 (2010)CrossRef
Luo, X. G., Chen, X. H., Wang, G. Y., Wang, C. H., Xiong, Y. M., Song, H. B. and Lu, X. X., Europhys. Lett. 74, 526 (2006)CrossRef
Saini, S., Mele, P., Miyazaki, K., and Tiwari, A., Energ. Convers. Manage. 114, 251 (2016)CrossRef
Koshibae, W., Tsutsui, K., and Maekawa, S., Phys. Rev. B 62, 6869 (2000)CrossRef
Limelette, P., Hardy, V., Auban-Senzier, P., Jérome, D., Flahaut, D., Hébert, S., Frésard, R., Simon, Ch., Noudem, J., and Maignan, A., Phys. Rev. B 71, 233108 (2005)CrossRef
Altin, S., Aksan, M.A., Bayri, A., J. Alloy Compd 587, 40 (2014)CrossRef
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B., Phys. Rev. B 62, 166 (2000)CrossRef
Jarrell, M., Pang, H., Cox, D. L., and Luk, K. H., Phys. Rev. Lett. 77, 1612 (1996)CrossRef
Haule, K., Rosch, A., Kroha, J., and Wölfle, P., Phys. Rev. Lett. 89, 236402 (2002)CrossRef
Hartnoll, S. A., Nat. Phys. 11, 54 (2015)CrossRef
Zhu, X., Sun, Y., Lei, H., Li, X., Ang, R., Zhao, B., Song, W., Shi, D., and Dou, S., J. Appl. Phys. 102, 103519 (2007)CrossRef
Sugiyama, J., Itahara, H., and Tani, T., Phys. Rev. B 66, 134413 (2002)CrossRef
Sugiyama, J., Brewer, J. H., Ansaldo, E. J., Itahara, H., Dohmae, K., Seno, Y., Xia, C., and Tani, T., Phys. Rev. B 68, 134423 (2003)CrossRef
Huang, Y., Zhao, B., Ang, R., Lin, S., Huang, Z., Yin, L., Tan, S., Liu, Y., Song, W., and Sun, Y., J. Am. Ceram. Soc. 96, 791 (2013)CrossRef
Limelette, P., Soret, J. C., Muguerra, H.,2 and Grebille, D., Phys. Rev. B 77, 245123 (2008)CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 20 *
View data table for this chart

* Views captured on Cambridge Core between 23rd January 2017 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-m9qpn Total loading time: 0.227 Render date: 2021-01-22T13:09:17.726Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Low Temperature Magnetotransport Properties of Polycrystalline Ca3Co4O9
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Low Temperature Magnetotransport Properties of Polycrystalline Ca3Co4O9
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Low Temperature Magnetotransport Properties of Polycrystalline Ca3Co4O9
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *