Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-xnngd Total loading time: 0.251 Render date: 2021-03-09T06:06:43.154Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Laser-Fabricated Plasmonic Nanostructures for Surface-Enhanced Raman Spectroscopy of Bacteria Quorum Sensing Molecules

Published online by Cambridge University Press:  24 January 2017

Kyle Culhane
Affiliation:
Center for Biofrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918, United States
Ke Jiang
Affiliation:
Center for Biofrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918, United States
Aaron Neumann
Affiliation:
Department of Pathology, University of New Mexico, 915 Camino de Salud, Albuquerque, NM 87131, United States
Anatoliy O. Pinchuk
Affiliation:
Center for Biofrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918, United States Department of Physics and Energy Science, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918, United States
Corresponding
E-mail address:
Get access

Abstract

A laser deposition technique, based on the photo-reduction of silver ions from an aqueous solution, was used to fabricate silver nanostructure surfaces on glass cover slips. The resulting silver nanostructures exhibited plasmonic properties, which show promise in applications towards surface enhanced Raman spectroscopy (SERS). Using the standard thiophenol, the enhancement factor calculated for the deposits was approximately ∼106, which is comparable to other SERS-active plasmonic nanostructures fabricated through more complex techniques, such as electron beam lithography. The silver nanostructures were then employed in the enhancement of Raman signals from N-butyryl-L-homoserine lactone, a signaling molecule relevant to bacteria quorum sensing. In particular, the work presented herein shows that the laser-deposited plasmonic nanostructures are promising candidates for monitoring concentrations of signaling molecules within biofilms containing quorum sensing bacteria.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Tanaka, T., Ishikawa, A. and Kawata, S., Appl. Phys. Lett. 88, 081107 (2006).CrossRef
Xu, B., Zhang, R., Wang, H., Liu, X., Wang, L., Ma, Z., Chen, Q., Xiao, X., Han, B. and Sun, H., Nanoscale. 4, 6955 (2012).CrossRefPubMed
Aminuzzaman, M., Watanabe, A. and Miyashita, T., Thin Solid Films. 517, 5935 (2009).CrossRef
Cui, H., Liu, P. and Yang, G. W., Appl. Phys. Lett. 89, 153124 (2006).CrossRef
Henley, S. J. and Silva, S. R. P., Appl. Phys. Lett. 91, 023107 (2007).CrossRef
Bjerneld, E. J., Svedberg, F. and Käll, M., Nano Lett. 3, 593 (2003).CrossRef
Vieu, C., Carcenac, F., Pépin, A., Chen, Y., Mejias, M., Lebib, A., Manin-Ferlazzo, L., Couraud, L. and Launois, H., Appl. Surf. Sci. 164, 111 (2000).CrossRef
Haynes, C. L. and Van Duyne, R. P., J. Phys. Chem. B. 105, 5599 (2001).CrossRef
Salaita, K., Wang, Y. and Mirkin, C. A., Nat. Nanotechnol. 2, 145 (2007).CrossRef
Haynes, C. L., McFarland, A. D. and Van Duyne, R. P., Anal. Chem. 77, 338A (2005).CrossRef
Miller, M. B. and Bassler, B. L., Annu. Rev. Microbiol. 55, 165 (2001).CrossRef
Carlier, A., Uroz, S., Smadja, B., Fray, R., Latour, X., Dessaux, Y., and Faure, D., Appl. Environ. Microbiol. Microbiol. 69, 4989 (2003).CrossRef
Loh, J., Pierson, E. A., Pierson, L. S., Stacey, G., and Chatterjee, A., Curr. Opin. Plant Biol. 5, 1 (2002).CrossRef
Lenz, D. H., Mok, K. C., Lilley, B. N., Kulkarni, R. V., Wingreen, N. S., and Bassler, B. L., Cell 118, 69 (2004).CrossRef
de Kievit, T. R. and Iglewski, B. H., Infect. Immun. 68, 4839 (2000).CrossRef
Charlton, T. S., Nys, R. d., Netting, A., Kumar, N., Hentzer, M., Glvskov, M., and Kjelleberg, S., Environ. Microbiol. 2, 530 (2000).CrossRef
Ravn, L., Christensen, A. B., Molin, S., Givskov, M., and Gram, L., J. Microbiol. Methods. 44, 239 (2001).CrossRef
Anderson, J. B., Heydorn, A., Hentzer, M., Eberl, L., Geisenberger, O., Christensen, B. B., Molin, S., and Givskov, M., Appl. Environ. Microbiol. 67, 575 (2001).CrossRef
Pearman, W. F., Lawrence-Snyder, M., Angel, S. M. and Decho, A. W., Appl. Spectroscopy. 61, 1295 (2007).CrossRefPubMed
Claussen, A., Abdali, S., Berg, R. W., Givskov, M. and Sams, T., Curr. Phys. Chem. 3, 199 (2013).CrossRef
Jiang, K., Spendier, K. and Pinchuk, A. O., Proc. of SPIE. 9163, 916314–1 (2014).
Bryche, J-F., Gillibert, R., Barbillon, G., Gogol, P., Moreau, J., de la Chapelle, M. L., Bartenlian, B. and Canva, M., Plasmonics. 11, 601 (2016).CrossRef
Fontana, J., Livenere, J., Bezares, F. J., Caldwell, J. D., Rendell, R. and Ratna, B. R., Appl. Phys. Lett. 102, 201606 (2013).CrossRef
Caldwell, J. D., Glembocki, O., Bezares, F. J., Bassim, N. D., Rendell, R. W., Feygelson, M., Ukaegbu, M., Kasica, R., Shirey, L. and Hosten, C., ACS Nano. 5, 4046 (2011).CrossRef
Bryche, J-F., Gillibert, R., Barbillon, G., Sarkar, M., Coutrot, A-L., Hamouda, F., Aassime, A., Moreau, J., de la Chapelle, M. L., Bartenlian, B. and Canva, M., J. Mater. Sci. 50, 6601 (2015).CrossRef
Gui, J. Y., Stern, D. A., Frank, D. G., Lu, F., Zapien, D. C. and Hubbard, A. T., Langmuir. 7, 955 (1991).CrossRef
Guo, Y., Oo, M. K. K., Reddy, K. and Fan, X., ACS Nano. 6, 381 (2012).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1
Total number of PDF views: 29 *
View data table for this chart

* Views captured on Cambridge Core between 24th January 2017 - 9th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Laser-Fabricated Plasmonic Nanostructures for Surface-Enhanced Raman Spectroscopy of Bacteria Quorum Sensing Molecules
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Laser-Fabricated Plasmonic Nanostructures for Surface-Enhanced Raman Spectroscopy of Bacteria Quorum Sensing Molecules
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Laser-Fabricated Plasmonic Nanostructures for Surface-Enhanced Raman Spectroscopy of Bacteria Quorum Sensing Molecules
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *