Skip to main content Accessibility help
×
Home

Article contents

The Influence of Cellular Debris on Cell Guidance and Implications for Incorporating Silicon Based Micropatterns

Published online by Cambridge University Press:  15 June 2017

Delphine Dean
Affiliation:
Department of Bioengineering, Clemson University, Rhodes Hall Rm. 301, Clemson, SC 29634
Katherine Hafner
Affiliation:
Department of Bioengineering, Clemson University, Rhodes Hall Rm. 301, Clemson, SC 29634
Xue Chen
Affiliation:
Department of Materials Science & Engineering, Clemson University, Sirrine Hall Rm. 161, Clemson, SC 29634
Brian Kirkland
Affiliation:
Department of Bioengineering, Clemson University, Rhodes Hall Rm. 301, Clemson, SC 29634
Theresa Hafner
Affiliation:
Department of Bioengineering, Clemson University, Rhodes Hall Rm. 301, Clemson, SC 29634
Marian S. Kennedy
Affiliation:
Department of Materials Science & Engineering, Clemson University, Sirrine Hall Rm. 161, Clemson, SC 29634
Corresponding
E-mail address:
Get access

Abstract

Determining what external stimuli influence cell differentiation, morphology, and growth continues to be a focus on many research groups to meet the healthcare Grand Challenges. While prior work has shown the influence of stiffness, surface chemistry and topography, these parameters often change in tandem, making it difficult to delineate the role of an individual component. This study examined the possible incorporation of microelectronic processing to produce reusable substrates for cell guidance studies. Subsequent plating of substrates cleaned with methods common in a microelectronic fabrication process showed complex responses including migration. Optical characterization of surfaces after cleaning showed remaining cellular debris that could be removed through the incorporation of a piranha solution. The micro patterned substrates did allow controlled comparison between dental pulp stem cells and osteoblast cells. The dental pulp cells did not show any cell alignment or cell proliferation (as indicated by cell density) with the isotropic or anisotropic micropatterns on the initial plating. The osteoblast cells (control) only aligned with the lines and not any of the other patterns (dots, holes or hexagons).

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Cheung, L. K. and Leung, A. C. F., J. Oral Maxillofac. Surg. 61, 1263 (2003).CrossRef
Lee, K. H., Maiden, M. F. J., Tanner, A. C. R., and Weber, H. P., J. Periodontol. 70, 131 (1999).CrossRef
Machtei, E. E., Oved-Peleg, E., and Peled, M., Clin. Oral Implants Res. 17, 658 (2006).CrossRef
Esposito, M., Ardebili, Y., and V Worthington, H., Cochrane Database Syst. Rev. (2014).
Mundy, G. R., Rodan, S. B., Majeska, R. J., DeMartino, S., Trimmier, C., Martin, T. J., and Rodan, G. A., Calcif. Tissue Int. 34, 542 (1982).CrossRef
Brunette, D. M., Kenner, G. S., and Gould, T. R. L., J. Dent. Res. 62, 1045 (1983).CrossRef
Wong, G. L., Lukert, B. P., and Adams, J. S., Nature 285, 254 (1980).CrossRef
Nijweide, P. J., van Iperen-van Gent, A. S., Kawilarang-de Haas, E. W., van der Plas, A., and Wassenaar, A. M., J. Cell Biol. 93, 318 (1982).CrossRef
Chen, T. L., Cone, C. M., Morey-Holton, E., and Feldman, D., J. Biol. Chem. 258, 4350 (1983).
Rifas, L., Shen, V., Mitchell, K., and Peck, W. A., Proc. Natl. Acad. Sci. 81, 4558 (1984).CrossRef
Forrest, S. M., Ng, K. W., Findlay, D. M., Michelangeli, V. P., Livesey, S. A., Partridge, N. C., Zajac, J. D., and Martin, T. J., Calcif. Tissue Int. 37, 51 (1985).CrossRef
Ber, S., Kose, G. T., and Hasirci, V., Biomaterials 26, 1977 (2005).CrossRef
Gao, Y., Gao, B., Wang, R., Wu, J., Zhang, L. J., Hao, Y. L., and Tao, X. J., Appl. Surf. Sci. 255, 5009 (2009).CrossRef
Citeau, A., Guicheux, J., Vinatier, C., Layrolle, P., Nguyen, T. P., Pilet, P., and Daculsi, G., Biomaterials 26, 157 (2005).CrossRef
Sato, M., Slamovich, E. B., and Webster, T. J., Biomaterials 26, 1349 (2005).CrossRef
Kazakia, G. J., Nauman, E. A., Ebenstein, D. M., Halloran, B. P., and Keaveny, T. M., J. Biomed. Mater. Res. Part A 77A, 688 (2006).CrossRef
Rea, S. M., Brooks, R. A., Schneider, A., Best, S. M., and Bonfield, W., J. Biomed. Mater. Res. Part B Appl. Biomater. 70B, 250 (2004).CrossRef
Xu, J. L., Khor, K. A., Sui, J. J., Zhang, J. H., and Chen, W. N., Biomaterials 30, 5385 (2009).CrossRefPubMed
Shi, Z., Huang, X., Cai, Y., Tang, R., and Yang, D., Acta Biomater. 5, 338 (2009).CrossRef
Lamers, E., van Horssen, R., te Riet, J., van Delft, F., Luttge, R., Walboomers, X. F., and Jansen, J. A., Eur Cell Mater. 329 (2010).
Liu, H., Gronthos, S., and Shi, S., in Adult Stem Cells, edited by K., I. and T.-M., R. L. B. in Enzymology (Academic Press, 2006), pp. 99113.CrossRefGoogle ScholarPubMed
Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., and Shi, S., Proc. Natl. Acad. Sci. U. S. A. 97, 13625 (2000).CrossRef
Young, C. S., Terada, S., Vacanti, J. P., Honda, M., Bartlett, J. D., and Yelick, P. C., J. Dent. Res. 81, 695 (2002).CrossRef
Casagrande, L., Cordeiro, M. M., Nör, S. A., and Nör, J. E., Odontology 99, 1 (2011).CrossRef
Galler, K. M., Cavender, A. C., Koeklue, U., Suggs, L. J., Schmalz, G., and D’aSouza, R. N. B. T.-R. M., Regen. Med. 6, 191 (2011).CrossRef
Neuss, S., Apel, C., Buttler, P., Denecke, B., Dhanasingh, A., Ding, X., Grafahrend, D., Groger, A., Hemmrich, K., Herr, A., Jahnen-Dechent, W., Mastitskaya, S., Perez-Bouza, A., Rosewick, S., Salber, J., Wöltje, M., and Zenke, M., Biomaterials 29, 302 (2008).CrossRef
Liu, L., Ling, J., Wei, X., Wu, L., and Xiao, Y., J. Endod. 35, 1368 (2009).CrossRef
Galler, K. M., Cavender, A., Yuwono, V., Dong, H., Shi, S., Schmalz, G., Hartgerink, J. D., and D’Souza, R. N., Tissue Eng. Part A 14, 2051 (2008).CrossRef
Qin, C., Baba, O., and Butler, W. T., Crit. Rev. Oral Biol. Med. 15, 126 (2004).CrossRef
Volponi, A. A., Pang, Y., and Sharpe, P. T., Trends Cell Biol. 20, 715 (2010).CrossRef
Song, J.-S., Stefanik, D., Damek-Poprawa, M., Alawi, F., and Akintoye, S. O., Differentiation 77, 29 (2009).CrossRefPubMed
Walther, A., Bernhardt, A., Pompe, W., Gelinsky, M., Mrozik, B., Hoffmann, G., Cherif, C., Bertram, H., Richter, W., and Schmack, G., Text. Res. J. 77, 892 (2007).CrossRef
Heinemann, C., Heinemann, S., Bernhardt, A., Worch, H., and Hanke, T., Biomacromolecules 9, 2913 (2008).CrossRef
Ganguly, S., Ashley, L. A., Pendleton, C. M., Grey, R. D., Howard, G. C., Castle, L. D., Peyton, D. K., Fultz, M. E., and DeMoss, D. L., Can. J. Physiol. Pharmacol. 86, 403 (2008).CrossRef
Fischer, L. M., Tenje, M., Heiskanen, A. R., Masuda, N., Castillo, J., Bentien, A., Émneus, J., Jakobsen, M. H., and Boisen, A., Microelectron. Eng. 86, 1282 (2009).CrossRef
Chen, X., Substrate Topography Design and Fabrication for Osteoblast and Dental Pulp Stem Cells Studies, Clemson University, 2011.Google Scholar
Riccio, M., Resca, E., Maraldi, T., Pisciotta, A., Ferrari, A., Bruzzesi, G., and De Pol, A., Eur. J. Histochem. Vol 54, No 4 (2010).CrossRef
Collart-Dutilleul, P.-Y., Secret, E., Panayotov, I., Deville de Périère, D., Martín-Palma, R. J., Torres-Costa, V., Martin, M., Gergely, C., Durand, J.-O., Cunin, F., and Cuisinier, F. J., ACS Appl. Mater. Interfaces 6, 1719 (2014).CrossRef
Huang, H.-H., Ho, C.-T., Lee, T.-H., Lee, T.-L., Liao, K.-K., and Chen, F.-L., Biomol. Eng. 21, 93 (2004).CrossRef
Zhang, W., Walboomers, X. F., van Kuppevelt, T. H., Daamen, W. F., Bian, Z., and Jansen, J. A., Biomaterials 27, 5658 (2006).CrossRef
Hung, C.-N., Mar, K., Chang, H.-C., Chiang, Y.-L., Hu, H.-Y., Lai, C.-C., Chu, R.-M., and Ma, C. M., Biomaterials 32, 6995 (2011).CrossRef
Zheng, L., Yang, F., Shen, H., Hu, X., Mochizuki, C., Sato, M., Wang, S., and Zhang, Y., Biomaterials 32, 7053 (2011).CrossRef
Li, Z., Gong, Y., Sun, S., Du, Y., , D., Liu, X., and Long, M., Biomaterials 34, 7616 (2013).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 21 *
View data table for this chart

* Views captured on Cambridge Core between 15th June 2017 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-6585876b8c-kppcf Total loading time: 0.506 Render date: 2021-01-28T12:37:42.016Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Influence of Cellular Debris on Cell Guidance and Implications for Incorporating Silicon Based Micropatterns
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Influence of Cellular Debris on Cell Guidance and Implications for Incorporating Silicon Based Micropatterns
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Influence of Cellular Debris on Cell Guidance and Implications for Incorporating Silicon Based Micropatterns
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *