Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.315 Render date: 2021-03-04T18:44:49.109Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Atomic-Orbital and Plane-Wave Approaches to Ferromagnetic Properties of Ni x Fe1-x Nanowires

Published online by Cambridge University Press:  07 February 2017

Ikram Ziti
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, CDMX 04510, Mexico National School of Applied Sciences, Abdelmalik Esaadi University, Tangier, Morocco
M. R. Britel
Affiliation:
National School of Applied Sciences, Abdelmalik Esaadi University, Tangier, Morocco
Chumin Wang
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, CDMX 04510, Mexico
Corresponding
E-mail address:
Get access

Abstract

There are growing interests on magnetic nanowires, due to their potential applications in magnetic sensors and recording devices. In this work, we report a comparative ab-initio study based on the Density Functional Theory (DFT) of Ni x Fe1-x nanowire periodic arrays by using atomic-orbital and plane-wave basis respectively through DMol3 and CASTEP codes. After performing the geometry optimization, we calculate the spin-polarized electronic density of states, average interatomic distance, and magnetic moments. For pure Ni nanowires (x = 1, the dependence of the magnetic moment obtained from CASTEP calculations on the cutoff energy, as well as that from DMol3 on the thermal smearing parameter is analyzed in detail. Both ab-initio calculations predict close magnetic moments for each x, being slightly larger those of DMol3 obtained with significantly less computing cost. Finally, these DFT results are compared with experimental data and a good agreement is observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Prina-Mello, A., Diao, Z. and Coey, J. M. D., J. Nanobiotechnol. 4, 9 (2006).CrossRef
Safi, M., Yan, M., Guedeau-Boudeville, M., Conjeaud, H., Garnier-Thibaud, V., Boggetto, N., Baeza-Squiban, A., Niedergang, F., Averbeck, D., and Berret, J., ACS Nano 5, 5354 (2011).CrossRef
Parkin, S. S. P., Hayashi, M. and Thomas, L., Science, 320, 190 (2008).CrossRef
Piraux, L., Dubois, S., Fert, A., J. Mag. Mag. Mater. 195, L287, (1996).CrossRef
Pfeifer, F. and Radeloff, C., J. Mag. Mag. Mater. 19, 190 (1980).CrossRef
Vázquez, M., Hernández-Vélez, M., Pirota, K., Asenjo, A., Navas, D., Velázquez, J., Vargas, P., and Ramos, C. Eur. Phys. J. B 40, 489 (2004).CrossRef
Almasi Kashi, M., Ramazani, A., Doudafkan, S., and Esmaeily, A. S., Appl. Phys. A 102, 761 (2011).CrossRef
Aravamudhan, S, Singleton, J, Goddard, P A, and Bhansali, S, J. Phys. D: Appl. Phys. 42 (2009) 115008 (9pp).CrossRef
Bonder, Y. and Wang, C., J. Appl. Phys. 100, 044319 (2006).CrossRef
Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K., and Payne, M. C., Zeitschrift fuer Kristallographie, 220, 567, (2005).
Delley, B., J. Chem. Phys. 113, 7756 (2000); J. Chem. Phys. 92, 508 (1990).CrossRef
Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).CrossRef
Anisimov, V.I. and Gunnarsson, O., Phys. Rev. B 43, 7570 (1991).CrossRef
Chang, S.-J., Yang, C.-Y., Ma, H.-C., and Tseng, Y.-C., J. Mag. Mag. Mater. 332, 21 (2013).CrossRef
Glaubitz, B., Buschhorn, S., Brüssing, F., Abrudan, R., and Zabel, H., J. Phys.: Condens. Matter 23, 254210 (2011).

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 27 *
View data table for this chart

* Views captured on Cambridge Core between 07th February 2017 - 4th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Atomic-Orbital and Plane-Wave Approaches to Ferromagnetic Properties of Ni x Fe1-x Nanowires
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Atomic-Orbital and Plane-Wave Approaches to Ferromagnetic Properties of Ni x Fe1-x Nanowires
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Atomic-Orbital and Plane-Wave Approaches to Ferromagnetic Properties of Ni x Fe1-x Nanowires
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *