Skip to main content Accessibility help
×
Home

Waimirite-(Y), orthorhombic YF3, a new mineral from the Pitinga mine, Presidente Figueiredo, Amazonas, Brazil and from Jabal Tawlah, Saudi Arabia: description and crystal structure

  • Daniel Atencio (a1), Artur C. Bastos Neto (a2), Vitor P. Pereira (a2), José T. M. M. Ferron (a3), M. Hoshino (a4), T. Moriyama (a4), Y. Watanabe (a4), R. Miyawaki (a5), José M. V. Coutinho (a1), Marcelo B. Andrade (a6), Kenneth Domanik (a7), Nikita V. Chukanov (a8), K. Momma (a5), H. Hirano (a4) and M. Tsunematsu (a4)...

Abstract

Waimirite-(Y) (IMA 2013-108), orthorhombic YF3, occurs associated with halloysite, in hydrothermal veins (up to 30 mm thick) cross-cutting the albite-enriched facies of the A-type Madeira granite (∼1820 Ma), at the Pitinga mine, Presidente Figueiredo Co., Amazonas State, Brazil. Minerals in the granite are 'K-feldspar', albite, quartz, riebeckite, 'biotite', muscovite, cryolite, zircon, polylithionite, cassiterite, pyrochlore-group minerals, 'columbite', thorite, native lead, hematite, galena, fluorite, xenotime-(Y), gagarinite-(Y), fluocerite-(Ce), genthelvite–helvite, topaz, 'illite', kaolinite and 'chlorite'. The mineral occurs as massive aggregates of platy crystals up to ∼1 μm in size. Forms are not determined, but synthetic YF3 displays pinacoids, prisms and bipyramids. Colour: pale pink. Streak: white. Lustre: non-metallic. Transparent to translucent. Density (calc.) = 5.586 g/cm3 using the empirical formula. Waimirite-(Y) is biaxial, mean n = 1.54–1.56. The chemical composition is (average of 24 wavelength dispersive spectroscopy mode electron microprobe analyses, O calculated for charge balance): F 29.27, Ca 0.83, Y 37.25, La 0.19, Ce 0.30, Pr 0.15, Nd 0.65, Sm 0.74, Gd 1.86, Tb 0.78, Dy 8.06, Ho 1.85, Er 6.38, Tm 1.00, Yb 5.52, Lu 0.65, O (2.05), total (97.53) wt.%. The empirical formula (based on 1 cation) is (Y0.69Dy0.08Er0.06Yb0.05Ca0.03Gd0.02Ho0.02Nd0.01Sm0.01Tb0.01Tm0.01Lu0.01)Σ1.00[F2.540.25O0.21]Σ3.00. Orthorhombic, Pnma, a = 6.386(1), b = 6.877(1), c = 4.401(1) Å, V = 193.28(7) Å3, Z = 4 (powder data). Powder X-ray diffraction (XRD) data [d in Å (I) (hkl)]: 3.707 (26) (011), 3.623 (78) (101), 3.438 (99) (020), 3.205 (100) (111), 2.894 (59) (210), 1.937 (33) (131), 1.916 (24) (301), 1.862 (27) (230). The name is for the Waimiri-Atroari Indian people of Roraima and Amazonas. A second occurrence of waimirite-(Y) is described from the hydrothermally altered quartz-rich microgranite at Jabal Tawlah, Saudi Arabia. Electron microprobe analyses gave the empirical formula (Y0.79Dy0.08Er0.05Gd0.03Ho0.02Tb0.01Tm0.01Yb0.01)Σ1.00[F2.85O0.080.07]Σ3.00. The crystal structure was determined with a single crystal from Saudi Arabia. Unit-cell parameters refined from single-crystal XRD data are a = 6.38270(12), b = 6.86727(12), c = 4.39168(8) Å, V = 192.495(6) Å3, Z = 4. The refinement converged to R 1 = 0.0173 and wR 2 = 0.0388 for 193 independent reflections. Waimirite-(Y) is isomorphous with synthetic SmF3, HoF3 and YbF3. The Y atom forms a 9-coordinated YF9 tricapped trigonal prism in the crystal structure. The substitution of Y for Dy, as well as for other lanthanoids, causes no notable deviations in the crystallographic values, such as unit-cell parameters and interatomic distances, from those of pure YF3.

Copyright

Corresponding author

*E-mail: datencio@usp.br

References

Hide All
Bastos Neto, A.C., Pereira, V.P., Pires, A.C., Barbanson, L. and Chauvet, A. (2013) Fluorine-rich xenotime from the Madeira world-class Nb-Ta-Sn deposit associated with the albite-enriched granite at Pitinga, Amazonia, Brazil. The Canadian Mineralogist, 50, 14531466.
Bastos Neto, A.C., Ferron, J.T.M.M., Chauvet, A., Chemale, F., Lima, E.F., Barbanson, L. and Costa, C.F.M. (2014a) U-Pb dating of the Madeira Suite and structural control of the albite-enriched granite at Pitinga (Amazonia, Brazil): Evolution of the A-type magmatism and implications for the genesis of the Madeira Sn-Ta-Nb (REE, cryolite) world-class deposit. Precambrian Research, 243, 181196.
Bastos Neto, A.C., Pereira, V.P., Atencio, D., Ferron, J.T.M.M. and Coutinho, J. (2014b) Waimirite-(Y), IMA 2013-108. CNMNC, Newsletter 19, February 2014, pages 167168. Mineralogical Magazine, 78, 165170.
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.
Bukvetskii, B.V. and Garashina, L.S. (1977) Crystalchemical investigation of the orthorhombic trifluorides of samarium, holmium, and ytterbium. Coordination Chemistry, 3, 791795.
Cheetham, A.K. and Norman, N. (1974) The structures of yttrium and bismuth trifluorides by neutron diffraction. Acta Chemica Scandinavica, A28, 5560.
Cheetham, A.K., Fender, B.E.F., Fuess, H. and Wright, A.F. (1976) A powder neutron diffraction study of lanthanum and cerium trifluorides. Acta Crystallographica, B32, 9497.
Chistyakova, M.B. and Kazakova, M.E. (1969) Fluocerite from Kazakhstan. Trudy Mineralogicheskogo Muzeya Akademiya Nauk SSSR, 19, 236238. [in Russian].
Chukanov, N.V (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht-Heidelberg-New York-London, pp. 1716.
Garashina, L.S. and Vishnyakov, Y.S. (1977) Structural changes in the series LnFeO3 and LnF3. Soviet Physics Crystallography, 22, 313315. [translated from Kristallografiya, 22, 547555.
Garashina, L.S., Sobolev, B.P., Aleksandrov, V.B. and Vishnyakov, Y.S. (1980) Crystal chemistry of rare earth fluorides. Soviet Physics Crystallography, 25, 171174.
Greis, O. (1976) Preparative, strukturelle und thermochemische Untersuchungen an Selten-Erd-Fluoriden under bedsonderer Berucksichtigung der Elemente Samarium, Europium, Thulium und Ytterbium. Inaugural-Dissertation, Albert-Ludwigs-Universitat, Freiburg, Germany, pp. 330.
Kollia, Z., Sarantopoulou, E., Cefalas, A.C., Nicolaides, C.A., Naumov, A.K., Semashko, V.V., Abdulsabirov, R.Y., Korableva, S.L. and Dubinskii, M.A. (1995) Vacuum-ultraviolet interconfigurational 4f3 ? 4f25d absorption and emission studies of the Nd3+ ion in KYF, YF, and YLF crystal hosts. Journal of the Optical Society of America B, 12, 782785.
Kondratyuk, I.P., Loshmanov, A.A., Muradyan, L.A., Maksimov, B.A., Sirota, M.I., Krivandina, E.A. and Sobolev, B.P. (1988) Neutron-diffraction study on NdF3. Soviet Physics, Crystallography, 33, 5760.
Lage, M.M., Righi, A., Matinaga, F.M., Gesland, J.-Y. and Moreira, R.L. (2004) Raman-spectroscopic study of lanthanide trifluorides with the b-YF3 structure. Journal of Physics: Condensed Matter, 16, 32073218.
Minuzzi, O.R.R., Ferron, J.M.T.M., Bastos Neto, A.C. and Pereira, V.P. (2003) Primeira notícia da descoberta de waimirita e atroarita, dois novos minerais na Mina de Pitinga, AM, Brasil. Pesquisas em Geociências, 30, 99101.
Momma, K. and Izumi, F. (2011) VESTA 3 for threedimensional visualization of crystal, volumetric and morphology d a t a. Journ a l o f Appl i e d Crystallography, 44, 12721276.
Nakamuta, Y. (1999) Precise analysis of a very small mineral by an X-ray diffraction method. Journal of the Mineralogical Society of Japan, 28, 117121. [in Japanese with English abstract].
Nowacki, W (1938) Die Kristallstruktur des kubischen Yttriumfluorids YF3. Zeitschrift für Kristallographie, 100, 242250.
Qian, L.W., Zai, J.T., Chen, Z., Zhu, J., Yuan, Y.P. and Qian, X.F. (2010) Control of the morphology and composition of yttrium fluoride via a salt-assisted hydrothermal method. CrystEngComm, 12, 99206.
Rotereau, K., Gesland, J.Y., Daniel, P. and Bulou, A. (1993) Raman scattering study of Czochralski-grown yttrium fluoride single crystals. Materials Research Bulletin, 28, 813819.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.
Sorokin, N.I., Sobolev, B.P. and Breiter, M.W. (2002) Specific features of anion transfer in HoF3 crystals at high temperatures. Physics of the Solid State, 44, 282285.
Styles, M.T. and Young, B.R (1983) Fluocerite and its alteration products from the Afu Hills, Nigeria. Mineralogical Magazine, 47, 4146.
Toraya, H. (1993) The determination of unit-cell parameters from Bragg reflection data using a standard reference material but without a calibration curve. Journal of Applied Crystallography, 26, 585590.
Trnovcová, V., Garashina, L.S., Škubla, A., Fedorov, P.P., Čička, R., Krivandina, E.A. and Sobolev, B.P. (2003) Structural aspects of fast ionic conductivity of rare earth fluorides. Solid State Ionics, 157, 195201.
Uvarov, N.F., Hairetdinov, E.F. and Boldyrev, V.V. (1984) Correlations between parameters of melting and conductivity of solid lonic compounds. Journal of Solid State Chemistry, 51, 5968.
Watanabe, Y., Hoshino, M. and Moriyama, T. (2014) Jabal Tawlah, a heavy REE-rich prospect in northwest Saudi Arabia. 21st General Meeting of the International Mineralogical Association, Johannesburg, South Africa, Abstract p. 62. Wilson, A.J.C. (editor) (1992) International Tables for Crystallography, Volume C. Kluwer Academic Publishers, Dordrecht, The Netherlands, 883 pp. Zalkin, A. and Templeton, D.H. (1953) The crystal structures of YF3 and related compounds. Journal of the American Chemical Society, 75, 24532458.
Zalkin, A. and Templeton, D.H. (1985) Refinement of the trigonal crystal structure of lanthanum trifluoride with neutron diffraction data (fluocerite). Acta Crystallographica, B41, 9193.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed