Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:57:22.403Z Has data issue: false hasContentIssue false

Variscan prograde P-T evolution and contact metamorphism in metabasites from the Sowia Dolina, Karkonosze-Izera massif, SW Poland

Published online by Cambridge University Press:  05 July 2018

S. Ilnicki*
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, 02-089 Warszawa, Al. Żwirki i Wigury 93, Poland

Abstract

Several bodies of moderately foliated and porphyroblastic metabasites crop out on the SE side of the metamorphic cover of the Karkonosze granite within metapelites of the Sowia Dolina area (West Sudetes, Saxothuringian zone). Depending on the microstructural setting of the Ca-amphiboles in the rocks, different mineral-chemical trends have been determined for Si, XMg, AlVI, A[Na+K] which serve as semi-quantitative indicators of temperature and pressure changes. Porphyroblasts and prisms oblique to the main foliation in schistose metabasites show zoning from Mg-hornblende and actinolite to tschermakite, and then to Mg-hornblende (or actinolite). Matrix amphiboles and those in pressure shadows around some porphyroblasts have tschermakitic cores and actinolitic rims. Rarely, Ca-amphibole is accompanied in schists by late- to post-tectonic cummingtonite. Thermobarometric calculations involving empirically calibrated amphibole equilibria enable a reconstruction of P-T paths for individual rocks and the unravelling of the metamorphic evolution of the metabasites. Peak metamorphic temperatures of 615–640°C and pressures of 7.3–8.2 kbar were preceded by a variably preserved earlier stage (T = 370–550°C, P = 2.8–6.2 kbar). The final metamorphic episode took place at 450–550°C and 2.5–4.8 kbar and is recorded particularly in rocks close to the Karkonosze pluton. The metabasites shed new light on the history of metamorphism in the Sowia Dolina area. The first two stages of MP-MT metamorphism, coeval with Variscan deformation events (continental collision, burial and subsequent exhumation), took place under epidote-amphibolite then amphibolite facies conditions. The last stage partly concurred with the final stages of Variscan deformation and overlapped the onset of thermal activity associated with the Karkonosze granite. This metamorphic event is documented by metabasites (occasionally cummingtonite-bearing) outcropping close to the granite. Finally, a prehnitebearing assemblage reflects retrograde re-equilibration under greenschist/sub-greenschist facies conditions (T <300–350°C, P <2.5–3 kbar), which might also be partly due to hydrothermal activity around the pluton.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akasaka, M., Hashimoto, H., Makino, K. and Hino, R. (2003) 57Fe Mössbauer and X-ray Rietveld studies of ferrian prehnite from Kouragahana, Shimane Peninsula, Japan. Japanese Magazine of Mineralogical and Petrological Sciences, 98, 3140.CrossRefGoogle Scholar
Aleksandrowski, P. and Mazur, S. (2002) Collage tectonics in the easternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. Pp. 237–277 in: Palaeozoic Amalgamation of Central Europe (Winchester, J.A., Pharaoh, T.C., Verniers, J., editors). Special Publication, 201, Geological Society of America, Boulder, Colorado, USA.CrossRefGoogle Scholar
Bachliński, R. and Smulikowski, W. (2005) SHRIMP study of zircons from Paczyn gneisses and related rocks (East Karkonosze Complex, West Sudetes) geochronological implications. Polskie Towarzystwo Mineralogiczne Prace Specjalne, 25, 2326.Google Scholar
Belka, Z., Valverde-Vaquero, P., Dörr, W., Ahrendt, H., Wemmer, K.M., Franke, W. and Schäfer, J. (2002) Accretion of first Gondwana-derived terranes at the margin of Baltica. Pp. 19–36 in: Palaeozoic Amalgamation of Central Europe (Winchester, J.A., Pharaoh, T.C., Verniers, J., editors). Special Publication, 201, Geological Society of America, Boulder, Colorado, USA.CrossRefGoogle Scholar
Bellot, J.P., Triboulet, C., Laverne, C. and Bronner, G. (2003) Evidence for two burial/exhumation stages during the evolution of the Variscan belt, as exemplified by P–T–t–d paths of metabasites in distinct allochthonous units of the Maures massif (SE France). International Journal of Earth Sciences, 92, 726.CrossRefGoogle Scholar
Bendl, J. and Patočka, F. (1995) The Rb-Sr isotope geochemistry of the metamorphosed bimodal volcanic association of the Rýchory Mts crystalline Complex, West Sudetes, Bohemian Massif. Geologia Sudetica, 29, 318.Google Scholar
Berg, G. (1940) Geologische Karte des Deutschen Reiches 1:25,000, Blatt Schmiedeberg. Preuβische Geologische Landesanstalt, Berlin.Google Scholar
Borkowska, M., Hameurt, J. and Vidal, P. (1980) Origin and age of Izera gneisses and Rumburk granites in the Western Sudetes. Acta Geologica Polonica, 30, 121146.Google Scholar
Brown, E.H. (1977) The crossite content of Caamphibole as a guide to pressure of metamorphism. Journal of Petrology, 18, 5372.CrossRefGoogle Scholar
Chab, J. and Vrana, S. (1979) Crossite-actinolite amphiboles of the Krkonoše-Jizera crystalline Complex and their geological significance. střední ústav geologickýPraha, 54, 143150.Google Scholar
Chaloupský, J. et al. (1989) Geologie of the Krknoše and the Jizerské hory Mts. Ústřední ústav geologickýPraha, 288 pp (in Czech, with English abstract).Google Scholar
Colombi, A. (1989) Metamorphisme et geochimie des roches mafiques des Alpes oueste-centrales (geoprofil Viege-Domodossola-Locarno). Memoires de Geologie (Lausanne), 4, 1216.Google Scholar
Crowley, Q.G., Floyd, P.A., Winchester, J.A., Franke, W. and Holland, J.G. (2000) Early Palaeozoic riftrelated magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova, 12, 171180.CrossRefGoogle Scholar
Deer, W.A., Howie, R. and Zussman, J. (1992) Rockforming Minerals. 3B: Layered Silicates Excluding Micas and Clay Minerals. The Geological Society, London, pp. 257–287.Google Scholar
Dostal, J., Patočka, F. and Pin, C. (2001) Middle/Late Cambrian intracontinental rifting in the central West Sudetes, NE Bohemian Massif (Czech Republic) geochemistry and petrogenesis of the bimodal metavolcanic rocks. Geological Journal, 36, 117.CrossRefGoogle Scholar
Droop, G. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431435.CrossRefGoogle Scholar
Duthou, J.L., Couturie, J.P., Mierzejewski, M.P. and Pin, C. (1991) Age determination of the Karkonosze granite using isochrone Rb-Sr whole rock method. Przegląd Geologiczny, 2, 7579.Google Scholar
Enami, M., Suzuki, K., Liou, J.G. and Bird, D.K. (1993) Al–Fe3+ and F–OH substitutions in titanite and constraints on their P–T dependence. European Journal of Mineralogy, 5, 219231.CrossRefGoogle Scholar
Evans, B.W. and Ghiorso, M.S. (1995) Thermodynamics and petrology of cummingtonite. American Mineralogist, 80, 649663.CrossRefGoogle Scholar
Franceschelli, M., Puxeddu, M., Cruciani, G. and Utzeri, D. (2007) Metabasites with eclogite facies relics from Variscides in Sardinia, Italy: a review. International Journal of Earth Sciences, 96, 795815.CrossRefGoogle Scholar
Franke, W. and Żelaźniewicz, A. (2000) The eastern termination of the Variscides: terranes correlation and kinematic evolution. Pp. 63–86 in: Orogenic Processes: Quantification and Modelling in the Variscan Belt (Franke, W., V. Haack, Oncken, O. and Tanner, D., editors). Special Publications, 179, Geological Society of London.CrossRefGoogle Scholar
Franz, G. and Spear, F.S. (1985) Aluminous titanite (sphene) from the eclogite zone, south-central Tauern Window, Austria. Chemical Geology, 50, 3346.CrossRefGoogle Scholar
Frey, M., de Capitani, C. and Liou, J.G. (1991) A new petrogenetic grid for low-grade metabasites. Journal of Metamorphic Geology, 9, 497509.CrossRefGoogle Scholar
Frost, B.R. (1991a) Introduction to oxygen fugacity and its petrologic importance. Pp. 1–9 in: Oxide Minerals: Petrologic and Magnetic Significance (Lindsley, D.H., editor). Reviews in Mineralogy and Geochemistry, 25, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Frost, B.R. (1991b) Magnetic petrology: factors that control the occurrence of magnetite in crustal rocks. Pp. 489–509 in: Oxide Minerals: Petrologic and Magnetic Significance (Lindsley, D.H., editor). Reviews in Mineralogy and Geochemistry, 25, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Furnes, H., Kryza, R., Muszyński, A., Pin, C. and Garmann, L.B. (1994) Geochemical evidence for progressive, rift-related early Paleozoic volcanism in the western Sudetes. Journal of Geological Society of London, 151, 91109.CrossRefGoogle Scholar
Gerya, T.V., Perchuk, L.L., Triboulet, C., Audren, C. and Ser’ko, A.I. (1997) Petrology of Tumanshet Zonal Metamorphic Complex, Eastern Sayan. Petrology, 5, 563595.Google Scholar
Gomez-Pugnaire, M.T., Azor, A., Fernandez-Soler, J.M., Lopez and Sanchez-Vizcaino, V. (2003) The amphibolites from the Ossa-Morena/Central Iberian Variscan suture (southwestern Iberian Massif): geochemistry and tectonic interpretation. Lithos, 68, 2342.CrossRefGoogle Scholar
Gunia, P. (1998) New data on geochemistry of metabasites from the Sowia Dolina in Karpacz. Polskie Towarzystwo Mineralogiczne Prace Specjalne, 11, 9496.(in Polish).Google Scholar
Hammarstrom, J.M. and Zen, E.-A. (1986) Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist, 71, 12971313.Google Scholar
Harlov, D.E. and Hansen, E.C. (2005) Oxide and sulphide isograds along a late Archean, deep-crustal profile in Tamil Nadu, South India. Journal of Metamorphic Geology, 23, 241259.CrossRefGoogle Scholar
Harlov, D., Tropper, P., Seifert, W., Nijland, T. and Förster, H.J. (2006) Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2 . Lithos, 88, 7284.CrossRefGoogle Scholar
Hietanen, A. (1974) Amphibole pairs, epidote minerals, chlorite, and plagioclase in metamorphic rocks, Northern Sierra Nevada, California. American Mineralogist, 59, 2240.Google Scholar
Holdaway, M.J. (1971) Stability of andalusite and the aluminum silicate phase diagram. American Journal of Science, 271, 97131.CrossRefGoogle Scholar
Holland, T. and Blundy, J. (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphiboleplagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 433447.CrossRefGoogle Scholar
Holland, T.J. and Richardson, S.W. (1979) Amphibole zonation in metabasites as a guide to the evolution of metamorphic conditions. Contributions to Mineralogy and Petrology, 70, 143148.CrossRefGoogle Scholar
Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H. and Sisson, V.B. (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72, 231239.Google Scholar
Ilnicki, S. (2000) Genesis of amphibole rocks and metabasites from the Stara Kamienica belt and from selected adjoining parts of the Izera block. PhD thesis, Warsaw University, 265 pp. (in Polish).Google Scholar
Ilnicki, S. (2002a) Amphibolites and metabasites from the Izera Block, West Sudetes. Polskie Towarzystwo Mineralogiczne Prace Specjalne, 20, 262269.Google Scholar
Ilnicki, S. (2002b) Composition of amphibole and plagioclase in amphibolites from northern contact zone of the Karkonosze granite: a preliminary report. Polskie Towarzystwo Mineralogiczne Prace Specjalne, 20, 103105.Google Scholar
Ilnicki, S. (2010) Petrogenesis of continental mafic dykes from the Izera Complex, Karkonosze-Izera Block (West Sudetes, SW Poland). International Journal of Earth Sciences, 99, 745773.CrossRefGoogle Scholar
Jacobson, C.E. (1995) Qualitative thermobarometry of inverted metamorphism in the Pelona and Rand Schists, southern California, using calciferous amphibole in mafic schist. Journal of Metamorphic Geology, 13, 7992.CrossRefGoogle Scholar
Johnson, M.C. and Rutherford, M.J. (1989) Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17, 837841.2.3.CO;2>CrossRefGoogle Scholar
Kachlík, V. and Patočka, F. (1998) Lithostratigraphy and tectonomagmatic evolution of the Zelezny Brod Crystalline Unit: some constraints for palaeotectonic development of the W Sudetes (NE Bohemian Massif). Geolines, 6, 3435.Google Scholar
Klomínský, J., Fediuk, F., Schovánek, P. and Gabašová, A. (2004) The hornblende-plagioclase hornfels from the contact aureole of the Tanvald granite, northern Bohemia – the raw material for Neolithic tools. Bulletin of Geosciences, 79, 6370.Google Scholar
Kozdrój, W., Cymerman, Z., Kachlík, V. and Opletal, M. (2001) Karkonosze-Izera Region. Pp. 22–27 in: Comments on the Geological map Lauzitz – Jizera – Karkonozse (without Cenozoic sediments) (Kozdrój, W., Krentz, O., Opletal, M., editors). Sächsisches Landesamt für Umwelt und Geologie/Bereich Boden und Geologie, Freiberg, Germany; Państwowy Instytut Geologiczny, Warszawa; and Českýgeolologický ústav Praha, Czech Republic.Google Scholar
Kröner, A., Hegner, E., Hammer, J., Haase, G., Bielicki, K.H., Krauss, M. and Eidam, J. (1994) Geochronology and Nd-Sr systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geologische Rundschau, 83, 375376.Google Scholar
Kröner, A., Jaeckel, P., Hegner, E. and Opletal, M. (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše and Orlice-Snieżnik Complex). International Journal of Earth Sciences, 90, 304324.CrossRefGoogle Scholar
Kryza, R. and Mazur, S. (1995) Contrasting metamorphic paths in the SE part of the Karkonosze-Izera Block (Western Sudetes, SW Poland). Neues Jahrbuch für Mineralogie Abhandlungen, 169, 157192.Google Scholar
Kryza, R., Mazur, S. and Pin, C. (1995) The Leszczyniec meta-igneous Complex in the eastern part of the Karkonosze-Izera Block, Western Sudetes: trace element and Nd isotope study. Neues Jahrbuch für Mineralogie Abhandlungen, 170, 5974.CrossRefGoogle Scholar
Kryza, R., Mazur, S., Aleksandrowski, P., Zalasiewicz, J., Sergeev, S. and Presnyakov, S. (2007) Ordovician initial-rift volcanism in the Central European Variscides (the Kaczawa Mountains, Sudetes, SW Poland). Evidence from SHRIMP dating of zircons. Journal of the Geological Society of London, 164, 12071215.CrossRefGoogle Scholar
Laird, J. (1988) Chlorites: metamorphic petrology. Pp. 405–453 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Laird, J. and Albee, A.L. (1981) Pressure, temperature, and time indicators in mafic schist: their application to reconstructing the polymetamorphic history of Vermont. American Journal of Science, 281, 127175.CrossRefGoogle Scholar
Leake, B.E. (1989) Widespread secondary Ca garnet and other Ca silicates in the Galway granite and its satellite plutons caused by fluid movements, western Ireland. Mineralogical Magazine, 62, 381386.CrossRefGoogle Scholar
Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A.J., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C.N. and Whittaker, E.J.W. (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's amphibole nomenclature. European Journal of Mineralogy, 16, 191196.CrossRefGoogle Scholar
Lindsley, D.H. (1991) Experimental studies of oxide minerals. Pp. 69–106 in: Oxide Minerals: Petrologic and Magnetic Significance (Lindsley, D.H., editor). Reviews in Mineralogy, 25, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Liou, J.G., Kim, H.S. and Maruyama, S. (1983) Prehnite-epidote equilibria and their petrologic applications. Journal of Petrology, 24, 324342.CrossRefGoogle Scholar
Liou, J.G., Maruyama, S. and Cho, M. (1985) Phase equilibria and mixed paragenesis of metabasites in low-grade metamorphism. Mineralogical Magazine, 49, 321333.CrossRefGoogle Scholar
Lucks, H., Schulz, B., Audren, C. and Triboulet, C. (2002) Variscan pressure-temperature evolution of garnet pyroxenites and amphibolites in the Baie d’Audierne metamorphic series, Brittany (France). Geological Society of America Special Paper, 364, 89103.Google Scholar
Machowiak, K. and Armstrong, R. (2007) SHRIMP UPb zircon age from the Karkonosze granite. Mineralogia Polonica Special Papers, 31, 193196.Google Scholar
aresch, W.V. (1977) Experimental studies on glaucophane: an analysis of present knowledge. Tectonophysics, 43, 109125.CrossRefGoogle Scholar
Marheine, D., Kachlík, V., Maluski, H., Patočka, F. and Żelaźniewicz, A. (2002) The 40Ar–39Ar ages from the West Sudetes (NE Bohemian Massif) constraints on the Variscan polyphase tectonothemal development. Pp. 133–155 in: Palaeozoic Amalgamation of Central Europe (Winchester, J.A., Pharaoh, T.C. and Verniers, J., editors). Special Publication, 201, Geological Society of America, Boulder, Colorado, USA.CrossRefGoogle Scholar
Mazur, S. (1995) Structural and metamorphic evolution of eastern cover of the Karkonosze granite in the southern part of the Rudawy Janowickie and the Lasocki Ridge. Geologia Sudetica, 29, 31103.(in Polish, with English abstract).Google Scholar
Mazur, S. and Aleksandrowski, P. (2001) The Teplá(?)/ Saxothuringian suture in the Karkonosze-Izera massif, Western Sudetes, Central European Variscides. International Journal of Earth Sciences, 90, 341360.CrossRefGoogle Scholar
Mazur, S. and Kryza, R. (1996) Superimposed compressional and extensional tectonics in the Karkonosze-Izera Block, NE Bohemian Massif. Pp. 5166 in: Europe and Other Regions (Oncken, O. and Janssen, C., editors). Proceedings of the 11th International Conference on Basement Tectonics. Basement Tectonics, 11. Kluwer, Dordrecht, The Netherlands.Google Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. and Oberc-Dziedzic, T. (2006) The Variscan Orogen in Poland. Geological Quarterly, 50, 89118.Google Scholar
Mazur, S., Aleksandrowski, P. and Szczepański, J. (2010) Outline structure and tectonic evolution of the Variscan Sudetes. Przegląd Geologiczny, 58, 133145.(in Polish with English abstract).Google Scholar
Miyashiro, A. (1994) Metamorphic Petrology. London, University College London Press, 404 pp.Google Scholar
Mochnacka, K., Oberc-Dziedzic, T., Mayer, W., Pieczka, A. and Goralski, M. (2007) Occurrence of sulphides in Sowia Dolina near Karpacz (SW Poland) – an example of ore mineralization in the contact aureole of the Karkonosze granite. Mineralogia Polonica, 38, 185207.CrossRefGoogle Scholar
Mochnacka, K., Oberc-Dziedzic, T., Mayer, W. and Pieczka, A. (2008) Ti remobilization and sulphide/ suphoarsenite mineralization in amphibolites: effect of granite intrusion (the Karkonosze-Izera Massif, SW Poland). Geological Quarterly, 52, 349368.Google Scholar
Narębski, W. (1980) Paleotectonic setting of Circum-Karkonosze Lower Palaeozoic Spilite-Keratophyre Suites based on geochemistry of iron group elements. Annales Societatis Geologorum Poloniae, 50, 325.Google Scholar
Nasir, S. and Okrusch, M. (1997) Metabasites from the central Vor-Spessart, north-west Bavaria. 2. Comparison of different geothermometers and geobarometers. Chemie der Erde Geochemistry, 57, 2550.Google Scholar
Novak, M., šrein, V. and Langrova, A. (1993) Epidote and associated fissure minerals from Pfarrerb near Sobotin (Northern Moravia, Czech Republic). A manifestation of a retrograde phase of the Variscan regional metamorphism. Abhandlungen der Geologischen Bundesanstalt, 49, 4348.Google Scholar
Oberc-Dziedzic, T. (1985) Influence of the Karkonosze granite on the Izera gneisses. Geological Quarterly, 29, 571588.(in Polish).Google Scholar
Oberc-Dziedzic, T. (1988) Development of gneisses and granites of the eastern part of the Izera crystalline Complex in the light of texture analysis. Prace Geologiczno-Mineralogiczne, 13, 184 pp. (in Polish, with English abstract).Google Scholar
Oberc-Dziedzic, T., Pin, C. and Kryza, R. (2005) Early Palaeozoic crustal melting in an extensional setting: petrological and Sm-Nd evidence from the Izera granite-gneisses, Polish Sudetes. International Journal of Earth Sciences, 94, 354368.CrossRefGoogle Scholar
Oberc-Dziedzic, T., Kryza, R., Mochnacka, K. and Larionov, A. (2010) Ordovician passive continental margin magmatism in the Central-European Variscides: U-Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. International Journal of Earth Sciences, 99, 2746.CrossRefGoogle Scholar
Okamoto, A. and Toriumi, M. (2004) Optimal mixing properties of calcic and subcalcic amphiboles: application of Gibbs’ method to the Sanbagawa schists, SW Japan. Contributions to Mineralogy and Petrology, 146, 529545.CrossRefGoogle Scholar
Oliver, G., Corfu, F. and Krogh, T. (1993) U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. Journal of Geological Society London, 150, 355369.CrossRefGoogle Scholar
Patocka, F. and Pin, C. (2005) Sm-Nd isotope and trace element evidence for heterogeneous igneous protoliths of Variscan mafic blueschists in the East Krkonoše Complex (West Sudetes, NE Bohemian Massif, Czech Republic). Geodinamica Acta, 18, 363374.CrossRefGoogle Scholar
Patočka, F., Pivec, E. and Olivierová, D. (1996) Mineralogy and petrology of mafic blueschists from the Rýchory Mts crystalline complex (Western Sudetes, Bohemian Massif). Neues Jahrbuch für Mineralogie Abhandlungen, 170, 313320.Google Scholar
Patočka, F., Kachlík, V. and Fajst, M. (2000) Maficfelsic to mafic-ultramafic Early Palaeozoic magmatism of the West Sudetes (NE Bohemian Massif) the South Krkonoše Complex. Zeitschrift für Geologisches Wissenschaften, 28, 177210.Google Scholar
Pattison, D.R.M., Spear, F.S., Debuhr, C.L., Cheney, J.T. and Guidotti, C.V. (2002) Thermodynamic modelling of the reaction muscovite + cordierite = Al2SiO5 + biotite + quartz + H2O. Journal of Metamorphic Geology, 20, 99118.CrossRefGoogle Scholar
Pin, C. and Marini, F. (1993) Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos, 29, 177196.CrossRefGoogle Scholar
Plyusnina, L.P. (1982) Geothermometry and geobarometry of plagioclase-hornblende bearing assemblages. Contributions to Mineralogy and Petrology, 80, 140146.CrossRefGoogle Scholar
Pouchou, I. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3175 in: Electron Microprobe Quantification (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Raase, P. (1974) Al and Ti contents of hornblende, indicators of pressure and temperature of regional metamorphism. Contributions to Mineralogy and Petrology, 45, 231236.CrossRefGoogle Scholar
Schmidt, M.W. (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110, 304310.CrossRefGoogle Scholar
Schulz, B., Triboulet, C. and Audren, C. (1995) Microstructures and mineral chemistry in amphibolites from the Western Tauern Window (Eastern Alps), and P-T deformation paths of the Alpine greenschist-amphibolite facies metamorphism. Mineralogical Magazine, 59, 641659.CrossRefGoogle Scholar
Schulz, B., Triboulet, C., Audren, C., Preifer, H.R. and Gilg, A. (2001) Two-stage prograde and retrograde Variscan metamorphism of glaucophane-eclogites, blueschists and greenschists from Ile de Groix (Brittany, France). International Journal of Earth Sciences, 90, 871889.CrossRefGoogle Scholar
Seston, R., Winchester, J.A., Piasecki, M.A.J., Crowley, Q.F. and Floyd, P.A. (2000) A structural model for the western-central Sudetes: a deformed stack of Variscan thrust sheets. Journal of the Geological Society of London, 157, 11551167.CrossRefGoogle Scholar
Šída, P. and Kachlík, V. (2009) Geological setting, petrology and mineralogy of metabasites in a thermal aureole of Tanvald granite (northern Bohemia) used for the manufacture of Neolithic tools. Journal of Geosciences, 54, 269287.Google Scholar
Smulikowski, W. (1999) Metabasic rocks of the Rudawy Janowickie and Lasocki Range – their significance in the study of metamorphic evolution of the east Karkonosze Complex (West Sudetes, NE Bohemian Massif). Archiwum Mineralogiczne, 52, 211274.Google Scholar
Spear, F.S. (1980) NaSi-CaAl exchange equilibrium between plagioclase and amphibole. Contributions to Mineralogy and Petrology, 72, 3341.CrossRefGoogle Scholar
Spear, F.S. (1981) An experimental study of hornblende stability and compositional variability in amphibolite. American Journal of Science, 281, 697734.CrossRefGoogle Scholar
Spear, F.S. (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America Monograph, 799 pp.Google Scholar
Szałamacha, J. (1957) Szczegółowa mapa geologiczna Sudetów 1:25,000. Arkusz Kowary, Państwowy Instytut Geologiczny, Warszawa.Google Scholar
Tait, J., Bachtadse, V., Franke, W. and Soffel, H. (1997) Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geologische Rundschau, 86, 585598.CrossRefGoogle Scholar
Terabayashi, M. (1988) Actinolite-forming reaction at low pressure and the role of Fe2+-Mg substitution. Contributions to Mineralogy and Petrology, 100, 268280.CrossRefGoogle Scholar
Triboulet, C. (1992) The (Na-Ca)amphibole-albitechlorite-epidote-quartz geothermobarometer in the system S-A-F-M-C-N-H2O. 1. An empirical calibration. Journal of Metamorphic Geology, 10, 545556.CrossRefGoogle Scholar
Triboulet, C. and Feybesse, J.L. (1998) Les metabasites birimiennes et archeennes de la region de Toulepleu-Ity (Cote-d’Ivoire) des roches portees a 8 kbar (= 24 km) et 14 kbar (=42 km) au Paleoproterozoique. Comptes Rendus de l ‘Academie des Sciences, Geodynamique, 327, 6166.Google Scholar
Triboulet, C., Thieblemont, D. and Audren, C. (1992) The (Na-Ca)amphibole-albite-chlorite-epidotequartz geothermobarometer in the system S-A-FMC-N-H2O. 2. Applications to metabasic rocks in different metamorphic settings. Journal of Metamorphic Geology, 10, 557566.CrossRefGoogle Scholar
Vernon, R.H. and Clarke, G.L. (2008) Principles of Metamorphic Petrology. Cambridge University Press, Cambridge, UK p. 33.Google Scholar
Winchester, J. and PACE (2002) Palaeozoic amalgamation of Central Europe: new result from recent geological and geophysical investigations. Tectonophysics, 360, 521.CrossRefGoogle Scholar
Winchester, J.A., Floyd, P.A., Chocyk, M., Horbowy, K. and Kozdrój, W. (1995) Geochemistry and tectonic environment of Ordovician meta-igneous rocks in the Rudawy Janowickie Complex, SW Poland. Journal of the Geological Society of London, 152, 105115.CrossRefGoogle Scholar
Yardley, B.W.D. (1989) An Introduction to Metamorphic Petrology. Longman Scientific & Technical, London-New York, 248 pp.Google Scholar
Żaba, J. (1984) Genesis and metamorphic evolution of gneisses and granitoids of the Izerski Stóg massif (Western Sudetes). Geologia Sudetica, 19, 89192.(in Polish, with English abstract).Google Scholar
Żelaźniewicz, A., Nowak, I., Achramowicz, S. and Czapliński, W. (2003) The northern part of the Izera- Karkonosze Block: a passive margin of the Saxothuringian terrane. Pp. 17–32 in: Sudety Zachodnie: od wendu do czwartorzędu (Ciężkowski, A., Wojewoda, J. and Żelaźniewicz, A., editors). WIND, Wrocław, Poland (in Polish, with English abstract).Google Scholar
Żelaźniewicz, A., Dörr, W., Bylina, P., Franke, W., Haack, H., Schastok, J., Grandmontagne, K. and Kulicki, C. (2004) The eastern continuation of the Cadomian orogen: U-Pb zircon evidence from Saxo- Thuringian granitoids in south-western Poland and northern Czech Republic. International Journal of Earth Sciences, 93, 773781.CrossRefGoogle Scholar
Zenk, M. (2001) Microstructures, mineral chemistry and geothermobarometry of metabasites from Barrow's mineral zones in the Dalradian of Scotland. Erlanger geologische Abhandlungen, 133, 1199.(in German with English abstract).Google Scholar
Zenk, M. and Schulz, B. (2004) Zoned Ca-amphiboles and related P-T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineralogical Magazine, 68, 769786.CrossRefGoogle Scholar