Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-06T09:12:48.148Z Has data issue: false hasContentIssue false

Transitional granulite-eclogite facies metamorphism of basic supracrustal rocks in a shear zone complex in the Precambrian shield of south India

Published online by Cambridge University Press:  05 July 2018

Biswajit Mukhopadhyay
Affiliation:
Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275, U.S.A.
Mihir K. Bose
Affiliation:
Department of Geology, Presidency College, Calcutta 700073, India

Abstract

The phase petrology of two bodies of basic granulites occurring in association with supracrustal sequences within a dextral oblique-slip shear complex in the high-grade terrain of south India, have been studied. Some metabasites are characterized by garnet + clinopyroxene assemblages such as Grt + Cpx + PI ± Hbl ± Opx ± Qtz + Fe-Ti oxide(s) which are high-pressure granulites (garnet-clinopyroxene subfacies) transitional between the intermediate-pressure granulites (orthopyroxene-plagioclase subfacies) and eclogite. Mineralogical characteristics suggest that metamorphic conditions did not reach the eclogite facies but certainly approached that level. Close spatial association of the garnetiferous varieties with garnet-free assemblages (Opx + Hbl + Pl ± Cpx) and intimate juxtaposition of anhydrous and hydrous assemblages indicate a complex interplay of variable μH2O and bulk composition, especially αSiO2. Due to variable and low closure temperature of Fe-Mg exchange reactions between coexisting pyroxene and garnet, reliable estimation of peak temperatures during this near eclogite-facies metamorphism is problematic. A combination of a garnet-clinopyroxene barometer and various temperature estimates suggests P-T conditions of 875 ± 25°C and 8 ± 1 kbar for the Mettuppalaiyam samples and 900 ± 50°C and 14 ± 2 kbar for the Kanjamalai samples. Bulk rock chemical differences in terms of SiO2-content can account for the development of similar mineral assemblages along a near adiabatic metamorphic gradient between these two localities. These assemblages represent some of the highest grade granulite facies rocks in south India. The high-pressure granulites are not in situ samples of ancient lower continental crust, but low-pressure protoliths buried at depth. Textural features suggest that the high-pressure garnet-clinopyroxene subfacies rocks evolved from an amphibolitic assemblage by formation of garnet at the expense of hornblende and plagioclase and this high-pressure assemblage underwent an isothermal decompression indicating a clockwise P-T-t path resulting from crustal thickening and exhumation. A later isobaric cooling, possibly accompanying shearing and high H2O influx (aH2O≈0.78) gave rise to the coexisting orthopyroxeneplagioclase subfacies rocks (intermediate pressure granulites).

Type
Crystal Growth
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. J. and Lindsley, D. H. (1988) Amer. Mineral., 73, 714–26.Google Scholar
Austrheim, H. (1986/87) Earth Planet. Sci. Lett., 81, 221-32.Google Scholar
Austrheim, H. and Griffin, W. L. (1985) Chem. Geol., 50, 267–81.CrossRefGoogle Scholar
Berman, R. G. (1988) J. Petrol., 29, 445–522.CrossRefGoogle Scholar
Bhattacharya, A. and Sen, S. K. (1986) J. Petrol., 27, 1119–41.CrossRefGoogle Scholar
Bhattacharya, A., Krishnakumar, K., Raith, M., and Sen, S. K. (1991) J. Petrol., 32, 629–56.CrossRefGoogle Scholar
Bohlen, S. R. (1991) J. Metamorphic Geol., 9, 223–9.CrossRefGoogle Scholar
Bose, M. K. (1979) Ind. J. Earth Sci., 6, 200–19.Google Scholar
Cameron, M. and Papike, J. J. (1979) Frotschr. Mineral, 57, 28–67.Google Scholar
Chappel, B. W. and White, J. R. (1970) Mineral. Mag., 37, 555–60.CrossRefGoogle Scholar
Condie, K. C, Allen, P. and Narayana, B. L. (1982) Contrib. Mineral. Petrol, 81, 157–67.CrossRefGoogle Scholar
Dahl, P. E. (1980) Amer. Mineral, 65, 854–66.Google Scholar
Danckwerth, P. A. and Newton, R. C. (1978) Contrib. Mineral. Petrol, 66, 189–201.CrossRefGoogle Scholar
Davidson, C. F. (1943) Roy. Soc. Edinburgh Trans., 61, 71–112.Google Scholar
Davidson, P. and Lindsley, D. H. (1985) Contrib. Mineral. Petrol, 91, 390–404.CrossRefGoogle Scholar
De Waard, D. (1965a) J. Petrol, 6, 165-91.Google Scholar
De Waard, D. (19656) Amer. J. Sci., 263, 455–61.CrossRefGoogle Scholar
Drury, S. A. and Holt, R. W. (1980) Tectonophys., 65, T1-T15.Google Scholar
Drury, S. A., Harris, N. B. W., Holt, R. W., Reeves-Smith, G. J., and Wightman, R. T. (1984) J. Geol, 92, 3–20.CrossRefGoogle Scholar
Ellis, D. J. and Green, D. H. (1979) Contrib. Mineral. Petrol, 71, 13–22.CrossRefGoogle Scholar
Frost, B. R. and Chacko, T. (1989) J. Geol, 97, 435–50.CrossRefGoogle Scholar
Green, D. H. and Ringwood, A. E. (1967) Geochim. Cosmochim. Ada, 31, 767–833.CrossRefGoogle Scholar
Harley, S. L. (1984a) J. Petrol, 25, 665-96.Google Scholar
Harley, S. L. (19896) Contrib. Mineral. Petrol, 86, 359–73.CrossRefGoogle Scholar
Harley, S. L. (1989) Geol Mag., 126, 215–7.CrossRefGoogle Scholar
Harris, N. B. W., Holt, R. W., and Drury, S. A. (1982) J. Geol, 90, 509–27.CrossRefGoogle Scholar
Hawthorne, F. C. (1983) Can. Mineral, 21, 173–480.Google Scholar
Hensen, B. (1982) Contrib. Mineral. Petrol, 76, 234–42.CrossRefGoogle Scholar
Howie, R. A. (1955) Trans. Roy. Soc. Edinburgh, 62, 725–68.CrossRefGoogle Scholar
Howie, R. A. and Subramaniam, A. P. (1957) Mineral. Mag., 35, 536.Google Scholar
Ito, K. and Kennedy, G. C. (1971) Amer. Geophys. Union Geophys. Monograph, 14, 303–14.Google Scholar
Jamtveit, B. (1987) Contrib. Mineral. Petrol, 95, 82–99.CrossRefGoogle Scholar
Jamtveit, B., Bucher-Nurminen, K., and Austrheim, H. (1990) Contrib. Mineral. Petrol, 104, 184–93.CrossRefGoogle Scholar
Janardhan, A. S., Newton, R. C, and Hansen, E. C. (1982) Contrib. Mineral. Petrol, 79, 130–49.CrossRefGoogle Scholar
Klaper, E. M. (1991) Schweiz. Mineral. Petrogr. Mitt., 71, 231–1.Google Scholar
Kohn, M. J. and Spear, F. S. (1989) Amer. Mineral, 74, 77–84.Google Scholar
Kretz, R. (1983), 68, 277-9. Krogh, E. J. (1988) Contr. Mineral. Petrol, 99, 44-8.Google Scholar
Lee, H. Y. and Ganguly, J. (1988) J. Petrol, 29, 93–113.CrossRefGoogle Scholar
Lindsley, D. H. (1991) Rev. Miner., 25, 69–128.Google Scholar
Lindsley, D. H. and Anderson, D. J. (1983) J. Geophys. Res., 88, A887-A906.Google Scholar
Livingstone, A. (1967) Mineral. Mag., 36, 380–8.Google Scholar
Lovering, J. F. and White, A. J. R. (1969) Contrib. Mineral. Petrol, 21, 9–52.CrossRefGoogle Scholar
Morimoto, N., Fabries, J., Ferguson, A. K., Ginz-burg, I. V., Ross, M., Seifer, F. A., and Zussman, J. (1988) Amer. Mineral, 73, 1123–33.Google Scholar
Mottana, A. (1986) Lithos, 19, 171–86.CrossRefGoogle Scholar
Mukhopadhyay, B. (1991) Amer. Mineral, 76, 512–29.Google Scholar
Mukhopadhyay, D. (1986) J. Geol, 94, 167–8.CrossRefGoogle Scholar
Naqvi, S. M. and Rogers, J. J. W. (1987) Granulite terrain Oxford Unversity Press, 82-101.Google Scholar
Newton, R. C. (1990) In: Precambrian Continental Crust and Economic Resources (Naqvi, S. M. ed.) Elsevier, Amsterdam.Google Scholar
Newton, R. C. and Hansen, E. C. (1986) In The Nature of the Lower Continental Crust (Dawson, J. B., Carswell, D. A., Hall, J., and Wedepohl, K. H., eds.. Geol Soc. Spec. Pub., 24, 297–307.CrossRefGoogle Scholar
Newton, R. C. and Perkins III, D. (1982) Amer. Mineral, 67, 203–22.Google Scholar
Pattison, D. R. M. and Newton, R. C. (1989) Contrib. Mineral. Petrol 101, 87–103.CrossRefGoogle Scholar
Perkins, D. (1991) Geol. Soc. Amer. Abst. Pro., 23, 392–93.Google Scholar
Prasad, C. V. R. K., Subba Reddy, N., and Newton, R. C. (1989) Contrib. Mineral. Petrol, 101, 87–103.Google Scholar
Raith, M., Raase, P., Ackermand, D., and Lai, R. K. (1983) Roy. Soc. Edinburgh Earth Sci. Trans., 73, 221–4.CrossRefGoogle Scholar
Ramberg, H. (1984) Econ. Geol, 43, 553–70.CrossRefGoogle Scholar
Ray, S. (1970) Neues Jahrb. Mineral., Mh., 456-66.Google Scholar
Ray, S. and Sen, S. K. (1970) Neues Jahrb. Mineral, Abh., 114, 61–88.Google Scholar
Robinson, P., Spear, F. S., Schumacher, J. C, Laird, J., Klein, C, Evans, B., and Doolan, B. (1982) Rev. Mineral, 9B, 1-228.Google Scholar
Santosh, M. (1987) Contrib. Mineral. Petrol, 93, 343–56.CrossRefGoogle Scholar
Saravanan, S. (1960) Ind. Miner., 1, 69–84.Google Scholar
Schumacher, R., Schenk, V., Raase, P., and Vitange, P. W. (1990) In High-grade metamorphism and Crustal Anatexis, (Ashworth, J. R. and Brown, M., eds.) Allan & Unwin, London.Google Scholar
Sen, S. K. (1973) Contrib. Mineral. Petrol, 38, 299–306.CrossRefGoogle Scholar
Sen, S. K. and Bhattacharya, A. (1984) Contrib. Mineral Petrol, 88, 64–71.CrossRefGoogle Scholar
Sen, S. K. and Ray, S. (1971a) Neues Jahrb. Mineral, Abh., 114, 301-19.Google Scholar
Sen, S. K. and Ray, S. (1971b) Neues Jahrb. Mineral, Abh., 115, 291–314.Google Scholar
Spear, F. S. (1981) Amer. J. Sci., 281, 697–734.CrossRefGoogle Scholar
Subramaniam, A. P. (1956) Bull. Geol. Soc. Amer., 67, 317–379.CrossRefGoogle Scholar
Subramaniam, A. P. (1956) Bull. Geol. Soc. Amer., 67, 317–379.CrossRefGoogle Scholar
Subramaniam, A. P. (1959) Amer. J. Sci., 257, 321-53.Google Scholar
Subba Reddy, N. and Prasad, C. V. R. K. (1982) J. Geol. Soc. Ind., 23, 80–84.Google Scholar
Viswanathan, T. V. (1969) Geol Ind. Mem., 100, 37–66.Google Scholar
Weaver, B. L. ( Tarney, J., Windley, B. F., Sugava-nam, E. B., and Venkata Rao, V. (1978) In Archaean Geochemistry (Windley, B. F., and Naqvi, S. M., eds.) Elsevier, 177-204.Google Scholar
Welch, M. D. and Pawley, A. R. (1991) Amer. Mineral., 76, 1931–1939.Google Scholar
Wells, P. R. A. (1977) Contrib. Mineral. Petrol. 62, 129–139.CrossRefGoogle Scholar
Windley, B. F. and Selvan, T. A. (1975) J. Geol. Soc. Ind., 16, 209–215.Google Scholar
Wood, B. J. (1974) Contrib. Mineral Petrol, 46, 1–15.CrossRefGoogle Scholar
Wood, B. J. (1975) Earth Planet. Sci. Lett., 26, 299–311.CrossRefGoogle Scholar