Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-22T12:59:22.978Z Has data issue: false hasContentIssue false

Trace element composition of quartz from different types of pegmatites: A case study from the Moldanubian Zone of the Bohemian Massif (Czech Republic)

Published online by Cambridge University Press:  05 July 2018

K. Breiter*
Affiliation:
Institute of Geology of the Academy of Sciences of the Czech Republic, v. v. i., Rozvojová 269, CZ-165 00 Prague 6, Czech Republic
L. Ackerman
Affiliation:
Institute of Geology of the Academy of Sciences of the Czech Republic, v. v. i., Rozvojová 269, CZ-165 00 Prague 6, Czech Republic
J. Ďurišova
Affiliation:
Institute of Geology of the Academy of Sciences of the Czech Republic, v. v. i., Rozvojová 269, CZ-165 00 Prague 6, Czech Republic
M. Svojtka
Affiliation:
Institute of Geology of the Academy of Sciences of the Czech Republic, v. v. i., Rozvojová 269, CZ-165 00 Prague 6, Czech Republic
M. Novák
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic

Abstract

The evolution of the trace-element patterns of quartz during crystallization of pegmatite melt was investigated using laser ablation inductively coupled plasma mass spectrometry. The contents of Al, B, Ba, Be, Cr, Fe, Ge, Li, Mn, P, Rb, Sn, Sr and Ti were analysed in quartz from the border, intermediate and core zones of four granitic pegmatites differing in degree of fractionation and origin. The material investigated originates from the pegmatite district of the Strážek Unit, Moldanubian Zone, Bohemian Massif, Czech Republic and includes: lepidolite LCT (Li-Cs-Ta) pegmatite from Rožná; berylcolumbite LCT pegmatite from Věžná; anatectic pegmatite from Znětínek; and intragranitic NYF (Nb-Y-F) pegmatite Vladislav from the Třebíč Pluton. The abundances of the elements analysed varied over wide intervals: <1 to 32 ppm Li, 0.5 to 6 ppm B, <1 to 10 ppm Ge, 1 to 10 ppm P, 10 to 450 ppm Al, 1 to 45 ppm Ti and <1 to 40 ppm Fe (average sample contents). Concentrations of Be, Rb, Sr, Sn, Ba, Cr and Mn are usually <1 ppm. Quartz from LCT pegmatites exhibits a distinct evolutionary trend with a decrease in Ti and an increase in Al, Li and Ge from the pegmatite border to the core. In comparison with the most fractionated rare-metal granites, pegmatitic quartz is relatively depleted in Al and Li, but strongly enriched in Ge. Quartz from simple anatectic and NYF pegmatites is poor in all trace elements with their evolution marked by a decrease in Ti and a small increase in Ge. There is little Al or Li and neither shows any systematic change with pegmatite evolution. Using the Ti-in-quartz thermobarometer, the outer zones of the Znětínek and Vladislav pegmatites crystallized at ∼670°C, whereas the border zone in the Rožná pegmatite yields a temperature near 610°C.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, L., Zachariaš, J. and Pudilová, M. (2007) P-T and fluid evolution of barren and lithium pegmatites from Vlastějovice, Bohemian Massif, Czech Republic. International Journal of Earth Sciences, 96, 623638.Google Scholar
Beurlen, H., Müller, A., Silva, D. and Silva, M.R.R.D. (2011) Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema pegmatite province, northeast Brazil. Mineralogical Magazine, 75, 27032719.CrossRefGoogle Scholar
Breiter, K. (2008) Durbachites of the Třebíčpluton within the borehole Požd’átky V-5 – genetic interpretation. Pp. 143–147 in: Zprávy o geologických výzkumech v roce 2007. Česká geologická služba, Prague [in Czech].Google Scholar
Breiter, K. and Kronz, A. (2004) Phosphorus-rich topaz from fractionated granites (Podlesí, Czech Republic). Mineralogy and Petrology, 81, 235247.Google Scholar
Breiter, K. and Müller, A. (2009) Evolution of rare metal-specialised granite melt documented by quartz chemistry. European Journal of Mineralogy, 21, 335346.Google Scholar
Breiter, K., Müller, A., Leichmann, J. and Gabašová, A. (2005a) Textural and chemical evolution of a fractionated granitic sytem: the Podlesístock, Czech Republic. Lithos, 80, 323345.CrossRefGoogle Scholar
Breiter, K., Novák, M., Koller, F. and Cempírek, J. (2005b) Phosphorus – an omnipresent minor element in garnet of diverse textural types from leucocratic granitic rocks. Mineralogy and Petrology, 85, 205221.CrossRefGoogle Scholar
Breiter, K., Svojtka, M., Ackermann, L., Ďurišová, J., Matoušková, Š., Švecová, K. and Loun, J. (2012a) Trace elements in quartz from pegmatite Věžná I (Česká Republika). Bulletin Národního muzea, 20, 218222.[in Czech].Google Scholar
Breiter, K., Svojtka, M., Ackerman, L. and Švecová, K. (2012b) Trace element composition of quartz from the Variscan Teplice caldera (Krušné hory/ Erzgebirge Mts., Czech Republic/Germany): Insights into the volcano-plutonic complex evolution. Chemical Geology, 326–327, 3650.CrossRefGoogle Scholar
Breiter, K., Ackerman, L., Svojtka, M. and Müller, A. (2013) Behavior of trace elements in quartz from plutons of different geochemical signature: A case study from the Bohemian Massif, Czech Republic. Lithos, 175–176, 5467.CrossRefGoogle Scholar
Cempírek, J. and Novák, M. (2006) Mineralogy of dumortierite-bearing abyssal pegmatites at Starkočand Běstvina, Kutná Hora Crystalline Complex. Journal of Geosciences, 51, 259270.Google Scholar
Cempírek, J., Novák, M., Ertl, A., Hughes, J.M., Rossman, G.R. and Darby, M.D. (2006) Fe-bearing olenite with tetrahedrally coordinated Al from an abyssal pegmatite at Kutná Hora, Czech Republic: structure, crystal chemistry, optical spectra and Xanes spectra. The Canadian Mineralogist, 44, 2330.CrossRefGoogle Scholar
Cempírek, J., Novák, M., Dolníček, Z., Kotková, J. and Škoda, R. (2010) Crystal chemistry and origin of grandidierite, ominelite, boralsilite and werdingite from the Bory Granulite Massif, Czech Republic. American Mineralogist, 95, 15331547.CrossRefGoogle Scholar
Černý, P., Smith, J.V., Mason, R.A. and Delaney, J.S. (1984) Geochemistry and petrology of feldspar crystal lization in the Věžná pegmat ite, Czechoslovakia. The Canadian Mineralogist, 22, 631–351.Google Scholar
Černý, P., Staněk, J., Novák, M., Baastgaard, H., Rieder, M., Ottolini, L., Kavalová, M. and Chapman, R. (1995) Chemical and structural evolution of micas at the Rožná and Dobrá Voda pegmatites, Czech Republic. Mineralogy and Petrology, 55, 177202.CrossRefGoogle Scholar
Černý, P., Chapman, R., Teertstra, D.K. and Novák, M. (2003) Rubidium- and cesium-dominant micas in granitic pegmatites. American Mineralogist, 88, 18321835.CrossRefGoogle Scholar
Černý, P., London, D. and Novák, M. (2012) Granitic pegmatites as reflections of their sources. Elements, 8, 289294.CrossRefGoogle Scholar
Cháb, J., Breiter, K., Fatka, O., Hladil, J., Kalvoda, J., Šimůnek, Z., Štorch, P., Vašíček, Z., Zajíc, J. and Zapletal, J. (2010) Outline of the geology of the Bohemian Massif: the Basement Rocks and their Carboniferous and Permian Cover. Czech Geological Survey, Prague. 295 pp.Google Scholar
Charoy, B., Chaussidon, M. and Noronha, F. (1995) Lithium zonation in white micas from Argemela microgranite (central Portugal): an in-situ ion-, electron-microprobe and spectroscopic investigation. European Journal of Mineralogy, 7, 335352.CrossRefGoogle Scholar
Čopjaková, R., Škoda, R., Vašinová Galiová, M. and Novák, M. (2013) Distributions of Y + REE and Sc in tourmaline and their implications for the melt evolution; examples from NYF pegmatites of the TřebíčPluton, Moldanubian Zone, Czech Republic. Journal of Geosciences, 58, 113131.CrossRefGoogle Scholar
Deans, J.R.L. (2010) Trace element and calculated temperature variation in quartz and titanite in the 36 Ma Harrison Pass pluton, Ruby Mountains NE Nevada. Unpublished MSc Thesis, Texas Tech University, Texas, USA.Google Scholar
Dennen, W.H. (1967) Trace elements in quartz as indicators of provenance. Geological Society of America Bulletin, 78, 125130.CrossRefGoogle Scholar
Dosbaba, M. and Novák, M. (2012) Quartz replacement by "kerolite" in graphic quartz-feldspar intergrowths from the Věžná I pegmatite, Czech Republic; A complex desilicification process related to episyenitization. The Canadian Mineralogist, 50, 16091622.CrossRefGoogle Scholar
Flem, B. and Bédard, P.L. (2002) Determination of trace elements in bcs crm 313/1 (bas) and nist srm 1830 by inductively coupled plasma-mass spectrometry and instrumental neutron activation analysis. Geostandards Newsletter, 26, 287300.CrossRefGoogle Scholar
Flem, B., Larsen, R.B., Grimstvedt, A. and Mansfeld, J. (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chemical Geology, 182, 237247.CrossRefGoogle Scholar
Gadas, P., Novák, M., Staněk, J., Filip, J. and Vašinová- Galiová, M. (2012) Compositional evolution of zoned tourmaline crystals from pockets in common pegmatites, the Moldanubian Zone, Czech Republic. The Canadian Mineralogist, 50, 895912.CrossRefGoogle Scholar
Gao, S., Liu, X., Yuan, H., Hattendorf, B., Gunther, D., Chen, L. and Hu S. (2002) Determination of fortytwo major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 26, 181196.CrossRefGoogle Scholar
Götze, J., Plötze, M., Graupner, T., Hallbauer, D.K. and Bray, C.J. (2004) Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminiscence, capillary ion analysis, and gas chromatography. Geochimica et Cosmochimica Acta, 68, 37413759.CrossRefGoogle Scholar
Götze, J., Plötze, M. and Trautmann, T. (2005) Structure and luminescence characteristics of quartz from pegmatites. American Mineralogist, 90, 1321.CrossRefGoogle Scholar
Holub, F.V. (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. Sborník geologických Věd, Ložisková Geologie a Mineralogie, 31, 526.Google Scholar
Horn, I., Rudnick, R.L. and McDonough, W.F. (2000) Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation- icp-ms: Application to U–Pb geochronology. Chemical Geology, 164, 281301.CrossRefGoogle Scholar
Huang, R. and Audétat, A. (2012) The titanium-inquartz (TitaniQ) thermobarometer: A critical examination and re-calibration. Geochimica et Cosmochimica Acta, 84, 7589.CrossRefGoogle Scholar
Jacamon, F. and Larsen, R.B. (2009) Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos, 107, 281291.CrossRefGoogle Scholar
Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A., Birbaum, K., Frick, D.A., Gunther, A. and Enzweller, J. (2011) Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostandards and Geoanalytical Research, 35, 397429.CrossRefGoogle Scholar
Kotková, J., Schaltegger, U., Leichmann, J. (2010) Two types of ultrapotassic plutonic rocks in the Bohemian Massif - Coeval intrusions at different crustal levels. Lithos, 115, 163176.CrossRefGoogle Scholar
Kusiak, M.A., Dunkley, D.J., Suzuki, K., Kachlík, V., Kędzior, A., Lekki, J., Opluštil, S. (2010) Chemical (non-isotopic) and isotopic dating of Phanerozoic zircon. A case study of durbachite from the TřebíčPluton, Bohemian Massif. Gondwana Research, 17, 153161.CrossRefGoogle Scholar
Larsen, R.B. (2002) The distribution of rare elements in K-feldspar as an indicator of petrogenic processes in granitic pegmatites: examples from two pegmatite fields in southern Norway. The Canadian Mineralogist, 40, 137151.CrossRefGoogle Scholar
Larsen, R.B., Polvé, M. and Juve, G. (2000) Granite pegmatite from Evje-Iveland: trace element chemistry and implications for the formation of highpurity quartz. NGU Bulletin, 436, 5765.Google Scholar
Larsen, R.B., Henderson, I., Ihlen, P.M. and Jacamon, F. (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contributions to Mineralogy and Petrology, 147, 615628.CrossRefGoogle Scholar
Larsen, R.B, Jacamon, F. and Kronz, A. (2009) Trace element chemistry and textures of quartz during the magmatic hydrothermal transition of Oslo Rift granites. Mineralogical Magazine, 73, 691707.CrossRefGoogle Scholar
London, D. (1992) Phosphorus in S-type magmas: The P2O5 content of feldspars from peraluminous granites, pegmatites, and rhyolites. American Mineralogist, 77, 126145.Google Scholar
Lyakhovich, V.V. (1972) Trace Elements in Rockforming Minerals of Granitoids. Izd. Nedra, Moscow. 200 pp, [in Russian].Google Scholar
Melleton, J., Gloaguen, E., Frei, D., Novák, M., Breiter, K. (2012) Timing relationships between emplacement of rare-element pegmatites, metamorphism and magmatism: Example from the Variscan Bohemian Massif (Czech Republic). The Canadian Mineralogist, 50, 17511773.CrossRefGoogle Scholar
Monecke, T., Kempe, U. and Götze, J. (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study. Earth and Planetary Science Letters, 202, 709724.CrossRefGoogle Scholar
Müller, A. and Ihlen, P.M. (2012) Trace elements of pegmatite quartz and their regional distribution in two pegmatite fields of southern Norway. Pp. 445–451 in: Proceedings of the 10th International Congress of Applied Mineralogy (ICAM) (M.A.T.M. Broekmans, editor). Springer-Verlag, Berlin, Heidelberg.Google Scholar
Müller, A. and Koch-Müller, M. (2009) Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineralogical Magazine, 73, 569583.CrossRefGoogle Scholar
Müller, A., Kronz, A. and Breiter, K. (2002) Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic PodlesíGranite System (Krušné Hory, Czech Republic). Bulletin of the Czech Geological Survey, 77, 135145.Google Scholar
Müller, A., Ihlen, P.M. and Kronz, A. (2008a) Quartz chemistry in polygeneration Sveconorwegian pegmatites, Froland, Norway. European Journal of Mineralogy, 20, 447463.CrossRefGoogle Scholar
Müller, A., Seltmann, R., Kober, B., Eklund, O., Jeffries, T. and Kronz, A. (2008b) Compositional zoning of rapakivi feldspars and coexisting quartz phenocrysts. The Canadian Mineralogist, 46, 14171442.CrossRefGoogle Scholar
Müller, A., Wiedenbeck, M., Flem, B. and Schiellerup, H. (2008c) Refinement of phosphorus determination in quartz by LA-ICP-MS through defining new reference material values. Geostandards and Geoanalytical Research, 32, 361376.CrossRefGoogle Scholar
Müller, A., van den Kerkhof, A.M., Behr, H.-J., Kronz, A. and Koch-Müller, M. (2010) The evolution of late-Hercynian granites and rhyolites documented by quartz – a review. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100, 185204.CrossRefGoogle Scholar
Müller, A., Snook, B., Ihlen, M.P., Beurlen, H. and Breiter, K. (2013) Diversity of the quartz chemistry of NYF- and LCT-type pegmatites and its economic implications. Pp. 1774-1776. Mineral deposit research for a high-tech world. Proceedings of the 12th Biennial SGA Meeting, 12–15 August 2013. Vol. 4, Uppsala, Sweden.Google Scholar
Novák, M. and Cempírek, J. (Editors) (2010) Granitic pegmatites and mineralogical museums in Czech Republic. IMA 2010, Budapest, Hungary. Acta Mineralogica-Petrographica, Field guidebook serie, 6, 156.Google Scholar
Novák, M. and Filip, J. (2010) Unusual Na,Mg enriched beryl and its breakdown products (beryl II, bazzite, bavenite) from euxenite type NYF pegmatite related to the orogenic ultrapotassic TřebíčPluton, Czech Republic. The Canadadian Mineralogist, 48, 3, 615628.CrossRefGoogle Scholar
Novák, M., Černý, P., Kimbrough, D.L., Taylor, M.C., Ercit, T.S. (1998) U-Pb Ages of monazite from granitic pegmatites in the Moldanubian Zone and their geological implications. Acta Universitatis Carolinae Geologica, 42, 309310.Google Scholar
Novák, M., Povondra, P. and Selway, J.B. (2004) Schorl-oxy-schorl to dravite-oxy-dravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. European Journal of Mineralogy, 16, 323333.CrossRefGoogle Scholar
Novák, M., Škoda, R., Filip, J., Macek, I. and Vaculovič, T. (2011) Compositional trends in tourmaline from the intragranitic NYF pegmatites of the TřebíčPluton, Czech Republic; electron microprobe, LAICP- MS and Mössbauer study. The Canadian Mineralogist, 49, 359380.CrossRefGoogle Scholar
Novák, M., Škoda, R., Gadas, P., Krmíček, L. and Černý, P. (2012) Contrasting origins of the mixed signature in granitic pegmatites; examples from the Moldanubian Zone, Czech Republic. The Canadian Mineralogist, 50, 10771094.CrossRefGoogle Scholar
Novák, M., Kadlec, T. and Gadas, P. (2013): Geological position, mineral assemblages and contamination of granitic pegmatites in the Moldanubian Zone, Czech Republic; examples from the Vlastějovice region. Journal of Geosciences, 58, 2147.CrossRefGoogle Scholar
Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J. and Pankrath, R. (1992) Microdistribution of aluminium, lithium and sodium in a quartz: possible causes and correlation with short lived cathodoluminescence. American Mineralogist, 77, 534544.Google Scholar
Povondra, P., Staňková, J. and Staněk, J. (1992) CO2- bearing cordierite of Moldanubian leptynite rock series from HorníBory, Czech Republic. Acta Universitatis Carolinae Geologia, 1992, 331349.Google Scholar
Schrön, W., Schmädicke, E., Thomas, R. and Schmidt, W. (1988) Geochemische Untersuchungen an Pegmatitquarzen. Zeitschrift für geologische Wissenschaften, 16, 229244.Google Scholar
Selway, J.B., Novák, M., Černý, P. and Hawthorne, F.C. (1999) Compositional evolution of tourmaline in lepidolite-subtype pegmatites. European Journal of Mineralogy, 11, 569584.CrossRefGoogle Scholar
Škoda, R. and Novák, M. (2007) Y, REE, Nb, Ta, Ti-oxide (AB2O6) minerals from REL-REE euxenite-subtype pegmatites of the TřebíčPluton, Czech Republic; substitutions and fractionation trends. Lithos, 95, 4357.CrossRefGoogle Scholar
Suttner, L.J. and Leininger, R.K. (1972) Comparison of the trace element content of plutonic, volcanic, and metamorphic quartz from southwestern Montana. Bulletin of the Geological Society of America, 83, 18551862.CrossRefGoogle Scholar
Taylor, M.C., Sheppard, J.B., Walker, J.N., Kleck, W.D. and Humiston, L.E. (2004) Magmatic hydrogels and hydrosols in the petrogenesis of rare-element pegmatites and other ore deposits. Geological Association of Canada. – Mineralogical Association of Canada Program Abstracts, 29, 198.Google Scholar
Teertstra, D.K., Černý, P. and Novák, M. (1995) Compositional and textural evolution of pollucite in rare-element pegmatites of the Moldanubicum. Mineralogy and Petrolology, 55, 3752.CrossRefGoogle Scholar
Thomas, R. and Davidson, P. (2012) Evidence of a water-rich silica gel state during the formation of a simple pegmatite. Mineralogical Magazine, 76, 27852801.CrossRefGoogle Scholar
van Achterbergh, E., Ryan, C.G., Jackson, S.E. and Griffin, W.L. (2001) Data reduction software for LAICP- MS. Pp. 239–243 in: Laser ablation-ICPMS in the Earth Sciences: Principles and Application (P.J. Sylvester, editor) Mineralogical Association of Canada Short Course Series, 29. Mineralogical Association of Canada, Québec, Canada.Google Scholar
Williamson, B.J., Stanley, C.J. and Wilkinson, J.J. (1997) Implications from inclusions in topaz for greisenisation and mineralisation in the Hensbarrow topaz granite, Cornwall, England. Contributions to Mineralogy and Petrology, 127, 119128.CrossRefGoogle Scholar
Supplementary material: PDF

Breiter et al. supplementary material

Supplementary Table

Download Breiter et al. supplementary material(PDF)
PDF 468.9 KB