Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T12:49:57.369Z Has data issue: false hasContentIssue false

TOURCOMP: A program for estimating end-member proportions in tourmalines

Published online by Cambridge University Press:  05 July 2018

A. Pesquera*
Affiliation:
Departamento de Mineralogía-Petrología, Universidad del País Vasco P.O. Box 644, 48080 Bilbao, Spain
F. Torres
Affiliation:
Departamento de Estadística e Investigaciόn Operativa, Universidad de Granada, Campus Fuentenueva, s/n, E-18002 Granada, Spain
P. Gil-Crespo
Affiliation:
Departamento de Mineralogía-Petrología, Universidad del País Vasco P.O. Box 644, 48080 Bilbao, Spain
J. Torres-Ruiz
Affiliation:
Departamento de Mineralogía-Petrología, Universidad de Granada, Campus Fuentenueva, s/n, E-18002 Granada, Spain

Abstract

A Visual Basic program (TOURCOMP) has been written to recast the tourmaline composition into end-member components from electron microprobe data or more complete tourmaline analyses. TOURCOMP is a program based on a linear algebraic model that directly calculates the end-member proportions of tourmalines from their structural formulae. The program is developed for IBM-compatible personal computers running under the Windows™ operating system. The source code has been also translated and compiled in order to run on an Apple computer. Analytical problems, uncertainties concerning site occupancies, and the normalization procedure to determine the structural formula are the main error sources. However, the method of recalculating tourmaline end-members presented in this paper is considered to provide reasonably good results, bearing in mind the chemical complexity of tourmaline.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu El-Enen, M.M. and Okrusch, M. (2007) The texture and composition of tourmaline in metasediments of the Sinai, Egypt: Implications for the tectono-metamorphic evolution of the Pan-African basement. Mineralogical Magazine, 71, 1740.CrossRefGoogle Scholar
Bloodaxe, E.S., Hughes, J.M., Dyar, M.D., Grew, E.S. and Guidotti, C.V. (1999) Linking structure and chemistry in the Schorl-Dravite series. American Mineralogist, 84, 922928.CrossRefGoogle Scholar
Bosi, F. and Lucchesi, S. (2004) Crystal chemistry of the schorl-dravite series. European Journal of Mineralogy, 16, 335344.CrossRefGoogle Scholar
Bosi, F. and Lucchesi, S. (2007) Crystal chemical relationships in the tourmaline group: Structural constraints on chemical variability. American Mineralogist, 92, 10541063.CrossRefGoogle Scholar
Burns, P.C., MacDonald, DJ. and Hawthorne, F.C. (1994) The crystal chemistry of manganiferous elbaite. The Canadian Mineralogist, 32, 3141.Google Scholar
Cámara, F., Ottolini, L. and Hawthorne, F. C. (2002) Crystal chemistry of three tourmalines by SREF, EMPA, and SIMS. American Mineralogist, 87, 14371442.CrossRefGoogle Scholar
Clark, CM. (2007) Tourmaline: Structural formula calculations. The Canadian Mineralogist, 45, 229237.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1997) Rock-Forming Minerals, vol. IB, Disilicates and Ring Silicates, 2nd edition. Geological Society, London, 697 pp.Google Scholar
Dietrich, R.V. (1985) The Tourmaline Group. Van Nostrand Reinhold Co. Inc., New York, 300 pp.CrossRefGoogle Scholar
Dietrich, H. and Petrakakis, K. (1986) A linear algebraic method for the calculation of pyroxene end-member components. Mineralogy and Petrology, 35, 275282.Google Scholar
Dyar, M.D., Taylor, M.E., Lutz, T.M., Francis, C.A., Guidotti, C.V. and Wise, M. (1998) Inclusive chemical characterization of tourmaline: Mössbauer study of Fe valence and site occupancy. American Mineralogist, 83, 848864.CrossRefGoogle Scholar
Epprecht, W. (1953) Die Gitterkonstanten der turmaline. Schweizerische Mineralogische Petrographische Mitteilungen, 33, 481505.Google Scholar
Foit, F.F. Jr. (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships. American Mineralogist, 74, 422431.Google Scholar
Grice, ID. and Ercit, T.S. (1993) Ordering of Fe and Mg in tourmaline: The correct formula. Neues Jahrbuch fur Mineralogie Abhandlungen, 165, 245266.Google Scholar
Hawthorne, F.C. (1996) Structural mechanisms for light-element variations in tourmaline. The Canadian Mineralogist, 34, 123132.Google Scholar
Hawthorne, F.C. and Henry, DJ. (1999) Classification of the minerals of the tourmaline group. European journal of Mineralogy, 11, 201215.CrossRefGoogle Scholar
Hawthorne, F.C, MacDonald, DJ. and Burns, P.C (1993) Reassignment of cation site occupancies in tourmaline: Al-Mg disorder in the crystal structure of dravite. American Mineralogist, 78, 265270.Google Scholar
Henry, DJ. and Dutrow, B.L. (1992) Tourmaline in a low grade clastic metasedimentary rocks: an example of the petrogenetic potential of tourmaline. Contributions to Mineralogy and Petrology, 112, 203218.CrossRefGoogle Scholar
Henry, DJ. and Dutrow, B.L. (1996) Metamorphic tourmaline and its petrologic applications. Pp. 503557 in: Boron: Mineralogy, Petrology and Geochemistry(Grew, E.S. and Anovitz, L.M., editors). Reviews in Mineralogy, 33, Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Henry, DJ. and Guidotti, C.V. (1985) Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70, 115.Google Scholar
Hughes, J.M., Ertl, A., Dyar, M.D., Grew, E.S., Shearer, C.K., Yates, M.G. and Guidotti, C.V. (2000) Tetrahedrally coordinated boron in a tourmaline: Boron-rich olenite from Stoffhiitte, Koralpe, Austria. The Canadian Mineralogist, 38, 861868.CrossRefGoogle Scholar
Hughes, J.M., Ertl, A., Dyar, M.D., Grew, E.S., Wieden-Beck, M. and Brandstatter, F. (2004) Structural and chemical response to varying [4]B content in zoned Fe-bearing olenite from Koralpe, Austria. American Mineralogist, 89, 447454.CrossRefGoogle Scholar
Kalt, A., Schreyer, W., Ludwig, T., Prowatke, S., Bernhardt, H.-J. and Ertl, A. (2001) Complete solid solution between magnesian schorl and lithian excess-boron olenite in a pegmatite from the Koralpe (eastern Alps, Austria). European Journal of Mineralogy, 13, 11911205.CrossRefGoogle Scholar
London, D. and Manning, D.A.C. (1995) Chemical variation and significance of tourmaline from southwest England. Economic Geology, 90, 495519.CrossRefGoogle Scholar
London, D., Ertl, A., Hughes, J.M., Morgan, G.B. VI, Fritz, E.A. and Harms, B.S. (2006) Synthetic Ag-rich tourmaline: Structure and chemistry. American Mineralogist, 91, 680684.CrossRefGoogle Scholar
Lynch, G. and Ortega, J. (1997) Hydrothermal alteration and tourmaline-albite equilibria at the Coxheath porphyry Cu-Mo-Au deposit, Nova Scotia. The Canadian Mineralogist, 35, 7994.Google Scholar
Marler, B., Borowski, M., Wodara, U. and Schreyer, W. (2002) Synthetic tourmaline (olenite) with excess boron replacing silicon in the tetrahedral site: II. Structural analyses. European Journal of Mineralogy, 14, 763771.CrossRefGoogle Scholar
Medaris, L.G. Jr., Fournelle, J.H. and Henry, DJ. (2003) Tourmaline-bearing quartz veins in the Baraboo quartzite, Wisconsin: Occurrence and significance of foitite and ‘oxy-foitite'. The Canadian Mineralogist, 41, 749758.CrossRefGoogle Scholar
Novák, M., Povondra, P. and Selway, IB. (2004) Schorl-oxy-schorl to dravite-oxy-dravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. European Journal of Mineralogy, 16, 323333.CrossRefGoogle Scholar
Perry, K.L. Jr. (1967) An application of linear algebra to petrologic problems: Part 1. Mineral classification. Geochimica et Cosmochimica Ada, 31, 10431078.CrossRefGoogle Scholar
Pesquera, A., Torres-Ruiz, J., Gil-Crespo, P.P. and Jiang, S.-Y. (2005) Petrographic, chemical and B-isotopic insights into the origin of tourmaline-rich rocks and boron recycling in the Martinamor antiform (Central Iberian Zone, Salamanca, Spain). Journal of Petrology, 46, 10131044.CrossRefGoogle Scholar
Pieczka, A. and Kraczka, J. (2004) Oxidized tourmalines — a combined chemical, XRD and Mössbauer study. European Journal of Mineralogy, 16, 309321.CrossRefGoogle Scholar
Schreyer, W., Hughes, J.M., Bernhardt, H., Kalt, A., Prowatke, S. and Ertl, A. (2002) Reexamination of olenite from the type locality: detection of boron in tetrahedral coordination. European Journal of Mineralogy, 14, 935942.CrossRefGoogle Scholar
Selway, J.B. and Novak, M. (1997) Experimental conditions, normalization procedure and used nomenclature for tourmaline. Pp. 1921 in: Tourmaline 1997 (Nove Mesto na Morave), Field Trip Guidebook (Novak, M. and Selway, J.B., editors).Google Scholar
Slack, J.F. (1996) Tourmaline associations with hydro-thermal ore deposits. Pp. 559643 in: Boron: Mineralogy, Petrology and Geochemistry, (Grew, E.S. and Anovitz, L.M., editors). Reviews in Mineralogy, 33, Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Spear, F.S. (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America, Monograph Series, Mineralogical Society of America, Washington, D.C. 799 pp.Google Scholar
Spear, F.S., Rumble, D. Ill and Ferry, J.M. (1982) Linear Algebraic manipulation of N-dimensional composition space. Pp. 503557 in: Characterization of Metamorphism through Mineral Equilibria, (Ferry, J.M., editor). Reviews in Mineralogy, 10. Mineralogical Society of America, Washington, D.C. Google Scholar
Tagg, S.L., Cho, H., Dyar, M.D. and Grew, E.S. (1999) Tetrahedral boron in naturally-occurring tourmaline. American Mineralogist, 84, 14511455.CrossRefGoogle Scholar
Thompson, J.B. Jr. (1982) Composition space: an algebraic and geometric approach. Pp. 131 in: Characterization of Metamorphism through Mineral Equilibria(Ferry, J.M., editor). Reviews in Mineralogy, 10, Mineralogical Society of America, Washington, D.C. Google Scholar
Tindle, A.G., Breaks, F.W. and Selway, J.B. (2002) Tourmaline in petalite-subtype granitic pegmatites: Evidence of fractionation and contamination from the Pakeagama Lake and separation lake areas of northwestern Ontario, Canada. The Canadian Mineralogist, 40, 753788.Google Scholar
Werding, G. and Schreyer, W. (1996) Experimental studies onborosilicates and selected borates. Pp. 117163 in: Boron: Mineralogy,Petrology and Geochemistry (Grew, E.S. and Anovitz, L.M., editors). Reviews inMin eralogy, 33. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Yavuz, F., Gültekin, A.H. and Karakaya, M.C. (2002) CLASTOUR: a computer program for classification of the minerals of the tourmaline group. Computer and Geosciences, 28, 10171036.CrossRefGoogle Scholar
Yavuz, F., Yavuz, V. and Sasmaz, A. (2006) WinClastour – a Visual Basic program for tourmaline formula calculation and classification. Computer and Geosciences, 32, 11561168.CrossRefGoogle Scholar
Zolotarev, A.A., Frank-Kamenetskaya, O.V. and Rozhdestvenskaya, I.V. (2007) Crystallochemical formulas and definition of species of tourmalinegroup minerals. Geology of Ore Deposits, 7, 547553.CrossRefGoogle Scholar
Supplementary material: File

Pesquera et al. supplementary material

Tourcomp program

Download Pesquera et al. supplementary material(File)
File 22.3 MB