Skip to main content Accessibility help
×
Home

Thermal expansion of highly silicic nepheline-kalsilite crystalline solutions

  • G. L. Hovis (a1), E. Person (a1), A. Spooner (a1) and J. Roux (a2)

Abstract

We have investigated the thermal expansion of nepheline-kalsilite crystalline solutions having 12.5% excess silicon relative to the stoichiometric composition. It is proposed that differences in the thermal expansion among various members of the series, and also between this series and a previously studied low-Si series, can be explained by three factors: (1) shrinkage of the tetrahedral rings caused by the substitution of Na for K, especially in the case of kalsilite, allows for greater expansion from the increased vibrational amplitude of Na ions with increasing temperature. (2) The occupancy of alkali sites by ions rather than vacancies draws tetrahedral rings inward via electrical attraction to these ions, providing the potential for greater expansion with ionic vibration as temperature increases. (3) Structural differences between nepheline and kalsilite, in particular the existence of two alkali sites in nepheline, account for the increased thermal expansion of K-enriched nepheline relative to Na-nepheline, as the occupation of the larger alkali position by K+ results in greater thermal expansion than is the case with Na+ occupancy of the same sites.

Copyright

Corresponding author

References

Hide All
Alderbert, P. and Traverse, J. P. (1984) A12O3 a high temperature thermal expansion standard. High Temperatures – High Pressures, 16, 127135.
Carpenter, M. A. and Cellai, D. (1996) Microstructures and high-temperature phase transitions in kalsilite. American Mineralogist, 81, 561584.
Courbion, G. and Ferey, G. (1988) Na2Ca3Al2F14: A new example of a structure with ‘independent F-’ —A new method of comparison between fluorides and oxides of different formula. Journal of Solid State Chemistry, 76, 426431.
de Dombal, R. F. and Carpenter, M. A. (1993) High-temperature phase transitions in Steinbach tridymite. European Journal of Mineralogy, 5, 607622.
Evain, M., Deniard, P., Jouanneaux, A. and Brec, R. (1993) Potential of the INEL X-ray position-sensitive detector. A general study of the Debye-Scherrer setting. Journal of Applied Crystallography, 26, 563569.
Henderson, C. M. B. and Roux, J. (1976) The thermal expansions and crystallographic transformations of some synthetic nephelines. Pp. 6069 in: Progress in Experimental Petrology, NERC Report 3 (Biggar, G. M., editor).
Henderson, C. M. B. and Roux, J. (1977) Inversions in sub-potassic nephelines.. Contributions to Mineralogy and Petrology, 61, 279298.
Henderson, C. M. B. and Taylor, D. (1982) The structural behaviour of the nepheline family: (1) Sr and Ba aluminates (MA12O4). Mineralogical Magazine, 45, 111127.
Henderson, C. M. B. and Taylor, D. (1988) The structural behaviour of the nepheline family: (3) Thermal expansion of kalsilite. Mineralogical Magazine, 52, 708711.
Holland, T. J. B. and Redfern, S. A. T. (1997) Unit-cell refinement: Changing the dependent variable, and use of regression diagnostics. Mineralogical Magazine, 61, 6577.
Hovis, G. L. and Roux, J. (1993) Thermodynamic mixing properties of nepheline-kalsilite crystalline solutions. American Journal of Science, 293, 11081127.
Hovis, G. L. and Roux, J. (1999) Thermodynamics of excess silicon in nepheline and kalsilite crystalline solutions. European Journal of Mineralogy, 11, 815827.
Hovis, G. L. and Crelling, J. A. (2000) The effects of excess silicon on immiscibility in the nepheline-kalsilite system. American Journal of Science, 300, 238249.
Hovis, G. L., Spearing, D. R., Stebbins, I., Roux, J. and Clare, A. (1992) X-ray powder diffraction and 23Na, 27A1, and 29Si MAS-NMR investigation of nepheline-kalsilite crystalline solutions. American Mineralogist, 77, 1929.
Hovis, G. L., Brennan, S., Keohane, M. and Crelling, J. (1999) High-temperature X-ray investigation of sanidine-analbite crystalline solutions. Thermal expansion, phase transitions, and volumes of mixing. The Canadian Mineralogist, 37, 701709.
Hovis, G. L., Crelling, I, Wattles, D., Dreibelbis, B., Dennison, A., Keohane, M. and Brennan, S. (2003) Thermal expansion of nepheline-kalsilite crystalline solutions. Mineralogical Magazine, 67, 535546.
Kawahara, A., Andou, Y., Marumo, F. and Okuno, M. (1987) The crystal structure of the high temperature form of kalsilite (KAlSiO4) at 950°C. Mineralogical Journal, 13, 260270.
Merlino, S. (1984) Feldspathoids: Their average and real structures. Pp. 435470 in: Feldspars and Feldspathoids (Brown, W. L., editor). Reidel Publishing Company, Dordrecht, The Netherlands.
Parrish, W. (1953) X-ray reflection angle tables for several standards. Technical Report No. 68, Philips Laboratories Incorporated, Irvington on Hudson, New York.
Roux, J. and Volfinger, M. (1996) Mesures precises a l'aide d'un detecteur courbe. Journal de Physique IV, 6, colloque C4, 127134.
Sahama, Th.G. (1962) Perthite-like exsolution in the nepheline-kalsilite system. Norsk geologisk Tidsskrift, 43, 168179.
Salje, E. K. H., Graeme-Barber, A. and Carpenter, M. A. (1993) Lattice parameters, spontaneous strain and phase transitions in Pb3(PO4)2 . Acta Crystallographica, B49, 387392.

Keywords

Related content

Powered by UNSILO

Thermal expansion of highly silicic nepheline-kalsilite crystalline solutions

  • G. L. Hovis (a1), E. Person (a1), A. Spooner (a1) and J. Roux (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.