Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-19T19:55:58.929Z Has data issue: false hasContentIssue false

Terrestrial plant-Si and environmental changes

Published online by Cambridge University Press:  05 July 2018

J. D. Meunier
Affiliation:
CEREGE, Aix-Marseille University, CNRS, BP 80, F13545 Aix-en-Provence Cedex 4, France
F. Guntzer
Affiliation:
CEREGE, Aix-Marseille University, CNRS, BP 80, F13545 Aix-en-Provence Cedex 4, France
S. Kirman
Affiliation:
CEREGE, Aix-Marseille University, CNRS, BP 80, F13545 Aix-en-Provence Cedex 4, France
C. Keller
Affiliation:
CEREGE, Aix-Marseille University, CNRS, BP 80, F13545 Aix-en-Provence Cedex 4, France

Abstract

The importance of silica in terrestrial land plants has been recognized since the middle of the 19th century with applications in agronomy and palaeovegetation reconstruction. In this presentation, we will review the latest advances in our understanding of phytolith formation and present a few examples of applications in the field of global environmental changes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandra, A., Meunier, J.D., Colin, F. and Koud, J.M. (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochimica et Cosmochimica Acta, 61, 677–682.Google Scholar
Bartoli, F. (1983) The biogeochemical cycle of silicon in two temperate forest ecosystems. Pp. 469–476 in : Environmental Biogeochemistr. (R. Hallberg, editor). Ecological Bulletin 35.Google Scholar
Berner, R.A. (1997) The rise of plants and their effect on weathering and atmospheric CO2 . Science, 276, 544–546.CrossRefGoogle Scholar
Blecker, S.W., McCulley, R.L., Chadwick, O.A. and Kelly, E.F. (2006) Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochemical cycles, 20, GB3023.CrossRefGoogle Scholar
Cary, L., Alexandra, A., Meunier, J.D., Boeglin, J.L. and Braun, JJ. (2005) Contribution of phytoliths to the suspended load of biogenic silica in the Nyong basin rivers (Cameroon). Biogeochemistry, 74, 101–114.CrossRefGoogle Scholar
Casey, W.H., Kinrade, S.D., Knight, C.T.G., Rains, D.W. and Epstein, E. (2003) Aqueous silicate complexes in wheat, Triticum aestivum L. Plant Cell and Environment, 27, 51–54.Google Scholar
Conley, DJ. (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles, 16, 68/1–68/8.CrossRefGoogle Scholar
Derry, L.A., Kurtz, A.C., Ziegler, K. and Chadwick, O.A. (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature, 433, 728–731.CrossRefGoogle ScholarPubMed
Desplanques, V., Cary, L., Mouret, J.C., Trolard, F., Bourne, G., Grauby, O. and Meunier, J.D. (2006) Silicon transfers in a rice field in Camargue (France). Journal of Geochemical Exploration, 88, 190–193.CrossRefGoogle Scholar
Ding, T.P., Ma, G.R., Shui, M.X., Wan, D.F. and Li, R.H. (2005) Silicon isotope study on rice plants from the Zhejiang province, China. Chemical Geology, 218, 41–50.CrossRefGoogle Scholar
Ding, T.P., Zhou, J.X., Wan, D.F., Chen, Z.Y., Wang, C.Y. and Zhang, F. (2008) Silicon isotope fractiona-tion in bamboo and its significance to the biogeochemical cycle of silicon. Geochimica et Cosmochimica Acta, 72, 1381–1395.Google Scholar
Falkowski, P.G., Katz, M.E., Knoll, A.H., Quigg, A., Raven, J.R., Schofield, O. and Taylor, FJ.R. (2004) The evolution of modern eukaryotic phytoplankton. Science, 305, 354–360.CrossRefGoogle ScholarPubMed
Folger, D.W. (1970) Wind transport of land-derived mineral, biogenic and industrial matter over the North Atlantic. Deep-Sea Research, 17, 337–352.Google Scholar
Fraysse, F., Pokrovsky, O.S., Schott, J. and Meunier, J.D. (2006) Surface chemistry, solubility and dissolution kinetics of plant phytolithes. Geochimica et Cosmochimica Acta, 70, 1939–1951.CrossRefGoogle Scholar
Gérard, F., Mayer, K.U., Hodson, MJ. and Ranger, J. (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochimica et Cosmochimica Acta, 72, 741–767.CrossRefGoogle Scholar
Hodson, M.J., White, P.J., Mead, A. and Broadley, M.R. (2005) Phylogenic variation in the silicon composition of plants. Annals of Botany, 96, 1027–1046.CrossRefGoogle Scholar
Inanaga, S., Okasaka, A. and Tanaka, S. (1995) Does silicon exist in association with organic compounds in rice plants. Soil Science and Plant Nutrition, 41, 111–117.CrossRefGoogle Scholar
Kirman, S. (2003) Cycles biogéochimiques et biodiver-sité en forêt tropicale humide: étude d'une succession primaire sur coulees basaltiques (La Reunion, Ocean Indien). PhD Thesis, Aix-Marseille University, 163 pp.Google Scholar
Kirman, S., Strasberg, D., Grondin, V., Colin, F., Gilles, J. and Meunier, J.D. (2007) Biomass and litterfall in a native lowland rainforest: Marelongue Reserve, La Reunion Island, Indian Ocean. Forest Ecology and Management, 252, 257–266.CrossRefGoogle Scholar
Kidder, D.K and Erwin, D.H. (2001) Secular distribution of biogenic silica through the Phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. Journal of Geology, 109, 509–522.CrossRefGoogle Scholar
Lu, H., Liu, Z., Wu, N., Berné, S., Saito, Y., Liu, B. and Wang, L. (2002) Rice domestication and climatic change: phytolith evidence from East China. Boreas, 31, 378–385.CrossRefGoogle Scholar
Lucas, Y., Luizao, F.J., Chauvel, A., Rouiller, J. and Nahon, D. (1993) The relation between biological activity of the rain forest and mineral composition of soils. Science, 260, 521–523.CrossRefGoogle ScholarPubMed
Ma, J.F. and Takahashi, E. (2002) Soil, Fertilizer and Plant Silicon Research in Japan. Elsevier, 281 pp.Google Scholar
Ma, J.F., Tamai, K. Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M., Ishigure, M., Murata, Y. and Yano, M. (2006) A silicon transporter in rice. Nature, 440, 688–691.CrossRefGoogle ScholarPubMed
Markewitz, D. and Richter, D.D. (1998) The bio in aluminium and silicon geochemistry. Biogeochemistry, 42, 235–252.CrossRefGoogle Scholar
Marschner, H. (1995) Mineral Nutrition of Higher Plants. 2nd Edition, Academic Press, London, 889 pp.Google Scholar
Matichenkov, V.V. and Bocharnikova, E.A. (2001) The relationship between silicon and soil physical and chemical properties. Pp. 209–219 in: Silicon in Agriculture. (Datnoff, L.E., Snyder, G.A. and Korndörker, G.H., editors). Elsevier.Google Scholar
Rains, D.W., Epstein, E., Zasoski, RJ. and Aslam, M. (2006) Active silicon uptake by wheat. Plant and Soil, 280, 223–228.CrossRefGoogle Scholar
Saccone, L., Conley, D.J., Koning, E., Sauer, D., Sommer, M., Kaczorek, D., Blecker, S.W. and Kelly, E.F. (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. European Journal of Soil Science, 58, 1446–1459CrossRefGoogle Scholar