Skip to main content Accessibility help
×
Home

Synthesis and structure of magnesium hydroxide fluoride, Mg(OH)F: a topological intermediate between brucite- and rutile-type structures

  • W. A. Crichton (a1) (a2), J. B. Parise (a3), H. Müller (a1), J. Breger (a4), W. G. Marshall (a5) and M. D. Welch (a6)...

Abstract

Magnesium hydroxyfluoride, Mg(OH)F, has been synthesized by a subcritical hydrothermal route from a 1:1 molar mixture of brucite, Mg(OH)2, and sellaite, MgF2 with a rutile type structure, in excess water. Using a combination of synchrotron X-ray and time-of-flight neutron powder diffraction, the structure of Mg(OH)F has been solved in the diaspore space group Pnma with a = 10.116(3), b = 4.6888(10) and c = 3.0794(7) Å at ambient conditions. The most intense diffraction lines are [d obs (hkl) I obs]: 2.291 (211) 10, 4.253 (101) 7, 1.747 (212) 7, 2.229 (401) 6 and 1.480 (610) (4) Å, with the largest d-spacing at 5.058 Å. Sharp infrared stretching bands are located at 3679 and 3645 cm–1, with a broader band at 3535 cm–1. The topology of the structure is intermediate between that of the OH and F endmembers, being derived through notional shearing nearly normal to the sheets of octahedra of the CdI2/Mg(OH)2-type structure. Further similar shearing at an interval 1/2a would lead to a Cd(OH)F-type structure, which is also related to the rutile structure type. The observations and model presented here indicate a close correlation between the structural properties of the endmembers and Mg(OH)F.

Copyright

Corresponding author

*E-mail: crichton@esrf.fr
Curent address: SAFT Li-ion Unit, SAFT, 111-113 Blvd. Alfred Daney, 33074 Bordeaux, France

Footnotes

Hide All

Work carried out while on sabbatical at the ILL and ESRF

Footnotes

References

Hide All
Altomare, A., Burla, M.C., Camalli, M., Carrozzini, B., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A.G.G., Polidori, G. and Rizzi, R. (1999) Expo: a program for full powder pattern decomposition and crystal structure solution. Journal of Applied Crystallography, 32, 339340.
Baur, W.H. and Kahn, A.A. (1971) Rutile-type compounds. VI. SiO2, GeO2 and a comparison with other rutile-type structures. Acta Crystallographica, B27, 21332139.
Booster, J.L., Voncken, J.H.L., Van Sandwijk, A. and Reuter, M.A. (2002) Characterization of hydroxylbearing magnesium fluoride containing physicallybound water. Powder Diffraction, 17, 112118.
Booster, J.L., Van Sandvijk, A. and Reuter, M.A. (2003) Conversion of magnesium fluoride to magnesium hydroxide. Minerals Engineering, 16, 273281.
Boultif, A. and Louer, D. (2004) Powder pattern indexing with the dichotomy method. Journal of Applied Crystallography, 37, 724731.
Braterman, P.S. and Cygan, R.T. (2006) Vibrational spectroscopy of brucite: a molecular simulation investigation. American Mineralogist, 91, 11881196.
Catti, M., Ferraris, G., Hull, S. and Pavese, A. (1995) Static compression and H disorder in brucite, Mg(OH)2, to 11 GPa: a powder neutron diffraction study. Physics and Chemistry of Minerals, 22, 200206.
Crane, R.L. and Ehlers, E.G. (1969) System MgF2-MgO. American Journal of Science, 267, 11051111.
Cudennec, Y., Riou, A., Gerault, Y. and Lecerf, A. (2000) Synthesis and crystal structures of Cd(OH)Cl and Cu(OH)Cl and relationship to brucite type. Journal of Solid State Chemistry, 151, 308312.
de Oliviera, E.F. and Hase, Y. (2001) Infrared study and isotopic effect of magnesium hydroxide. Vibrational Spectroscopy, 25, 5356.
Duffy, C.J. and Greenwood, H.J. (1979) Phase-equilibria in the system MgO-MgF2-SiO2-H2O. American Mineralogist, 64, 11561174.
Feitknecht, W. and Held, F. (1944) The hydroxychloride of magnesium. Helvetica Chimica Acta, 27, 14801495.
Frost, R.L. and Kloprogge, J.T. (1999) Infrared emission spectroscopic study of brucite. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 55, 21952205.
Hammersley, A.P., Svensson, S.O. and Thompson, A. (1994) Calibration and correction of spatial distortions in 2D detector systems. Nuclear Instruments and Methods in Physics Research, Section A, 346, 312321.
Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N. and Hausermann, D. (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Pressure Research, 14, 235248.
Hannemann, A., Hundt, R., Schon, J.C. and Jansen, M. (1998) A new method for space-group determination. Journal of Applied Crystallography, 31, 922928.
Hill, R.J. (1979) Crystal structure refinement and electron density distribution in diaspore. Physics and Chemistry of Minerals, 5, 179200.
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.
Hubbard, C.R. (1983) Certification of Si powder diffraction standard reference material-640a. Journal of Applied Crystallography, 16, 285288.
Hundt, R., Schon, J.C., Hannemann, A. and Jansen, M. (1999) Determination of symmetries and idealized cell parameters for simulated structures. Journal of Applied Crystallography, 32, 413416.
Hunter, B. (1998) Rietica-a visual Rietveld program. International Union of Crystallography Commission on Powder Diffraction Newsletter, 20.
Iitaka, Y., Locchi, S. and Oswald, H.R. (1961) Die Kristallstruktur von CuOHCl. Helvetica Chimica Acta, 44, 20952103.
ISIS (1996) Dedicated facility for high pressure diffraction. Pp. 6162. in: ISIS Facility Annual Report 19951996. RAL-TR-96-050, Rutherford Appleton Laboratory, Chilton, Oxfordshire, U
ISIS, K. (1997) PEARL. Pressure and engineering research line. Pp. 2839. in: ISIS Facility Annual Report 19961997. RAL-TR-97-050 Rutherford Appleton Laboratory, Chilton, Oxfordshire, UK.
Kister, S. (2003) Strukturuntersuchungen von Cadmiumhydroxidhalogeniden mittels Diffraktion, NMR-Spektroskopie und quantenmechanischen Ab Initio Berechnungen. Unpublished PhD thesis, University of Dortmund, Germany.
Krause, W. and Nolze, G. (2000) PowderCell for Windows, version 2.4. Federal Institute for Materials Research and Testing (BAM), Rudower Chausee 5, 12489 Berlin, Germany.
Lange, B.A. and Haendler, H.M. (1973) The thermal decomposition of nickel and zinc fluoride tetrahydrates. Journal of Inorganic and Nuclear Chemistry, 35, 31293133.
Larson, A.C. and von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los Alamos Laboratory Report LAUR 86748. Los Alamos, New Mexico, USA.
Le Bail, A., Duroy, H. and Fourquet, J.L. (1988) Abinitio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447452.
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H_O hydrogen bond lengths in minerals. Monatshefte für Chemie, Abhandlong, 130, 10471059.
Lutz, H.D., Moeller, H. and Schmidt, M. (1994) Lattice vibration spectra. Part LXXXI Brucite I.-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd)-IR and Raman spectra, neutron diffraction of Fe(OH)2. Journal of Molecular Structure, 328, 121132.
Parise, J.B., Leinenweber, K., Weidner, D.J., Tan, K. and von Dreele, R.B. (1994) Pressure-induced H bonding: neutron diffraction study of brucite, Mg(OD)2, to 9.3 GPa. American Mineralogist, 79, 193196.
Peter, S., Weckler, B., Roisnel, T. and Lutz, H.D. (1997) Linear, bent and trifurcated OH-_F-hydrogen bonds: neutron powder diffraction, infrared and Raman spectroscopies of Zn(OD)F I and Zn(OD)F Ia. Bulletin of the Chemists and Technologists of Macedonia, 16, 2132.
Putz, H., Schon, J.C. and Jansen, M. (1999) Combined method for ab initio structure solution from powder diffraction data. Journal of Applied Crystallography, 32, 864870.
Rodríguez, M.A., Millán, P., Rojas, R.M. and García Martínez, O. (1995) Thermal behaviour of copper substituted hydroxide fluoride series CuxCo1-x(OH)F. Journal of Thermal Analysis and Calorimetry, 44, 295404.
Schluter, J., Klaska, K.H. and Gebhard, G. (2000) Belloite, Cu(OH)Cl, a new mineral from Sierra Gorda, Antofagasta, Chile. Neues Jahrbuch für Mineralogie, Monatshefte, 6773.
Schmid, H. (1965) Beiträge zur Kenntnis der Kobalt(II)-Fluorid hydrate und Kobalt (II)-Hydroxidfluoride. Zeitschrift für anorganische und allgemeine Chemie, 334, 297303.
Serier, H. (2009) Autour des Fluorures et Oxydes de Zinc: Propriétés Opto-électroniques et Magnétoe ´lectroniques. Unpublished PhD thesis, University of Bordeaux 1, France. Serier, H., Gaudon, M., Demourgues, A. and Tressaud, A. (2007) Structural features of zinc hydroxyfluoride. Journal of Solid State Chemistry, 180, 34853492.
Shirley, R. (2004) Crysfire 2004: An Interactive Powder Indexing Support System. 41 Guildford Park Avenue, Guildford, Surrey, UK. Spek, A.L. (2003) Single-crystal structure validation with the program Platon. Journal of Applied Crystallography, 36, 713.
Spek, A.L. (2009) Structure validation in chemical crystallography. Acta Crystallographica Section D: Biological Crystallography, 65, 148155.
Srivastava, O.K. and Secco, E.A. (1967a) Studies on metal hydroxy compounds II. Infrared spectra of zinc derivatives e-Zn(OH)2, b-ZnOHCl, ZnOHF, Zn5(OH)8Cl2, and Zn5 (OH)8Cl2·H2O. Canadian Journal of Chemistry, 45, 585588.
Srivastava, O.K. and Secco, E.A. (1967b) Studies on metal hydroxy compounds. IV. Infrared spectra of cadmium derivatives Cd(OH)2, CdOHCl, CdOHF. Canadian Journal of Chemistry, 45, 31993201.
Stålhandske, C. (1979a) Cadmium fluoride hydroxide. Acta Crystallographica, B35, 21842186.
Stålhandske, C. (1979b) Refinement of mercury fluoride hydroxide. Acta Crystallographica, B35, 949951.
Taupin, D. (1973) Powder-diagram automatic-indexing routine. Journal of Applied Crystallography, 6, 380385.
Visser, J.W. (1969) A fully automatic program for finding unit cell from powder data. Journal of Applied Crystallography, 2, 8995.
Volkova, L.M., Samarets, L.V., Polishchuk, S.A. and Lantash, N.M. (1978) Crystal structures of zinc and cadmium hydroxyfluorides. Kristallografiya, 23, 951955.
Werner, P.E., Eriksson, L. and Westdahl, M. (1985) Treor, a semi-exhaustive trial-and-error powder indexing program for all symmetries. Journal of Applied Crystallography, 18, 367370.

Keywords

Synthesis and structure of magnesium hydroxide fluoride, Mg(OH)F: a topological intermediate between brucite- and rutile-type structures

  • W. A. Crichton (a1) (a2), J. B. Parise (a3), H. Müller (a1), J. Breger (a4), W. G. Marshall (a5) and M. D. Welch (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed