Skip to main content Accessibility help

Structure refinement, hydrogen-bond system and vibrational spectroscopy of hohmannite, Fe 3+ 2 [O(SO4)2]·8H2O

  • G. Ventruti (a1), G. Della Ventura (a2), R. Orlando (a3) and F. Scordari (a1)


The crystal structure of hohmannite, Fe 3+ 2[O(SO4)2]·8H2O, was studied by means of single-crystal X-ray diffraction (XRD) and vibrational spectroscopy. The previous structural model was confirmed, though new diffraction data allowed the hydrogen-bond system to be described in greater and more accurate detail. Ab initio calculations were performed in order to determine accurate H positions and to support the experimental model obtained from XRD data. Infrared and Raman spectra are presented for the first time for this compound and comments are made on the basis of the crystal structure and the known literature for sulfate minerals.


Corresponding author


Hide All
Adler, H.H. and Kerr, P.F. (1965) Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals. American Mineralogist 50, 132–147.
Bandy, M.C. (1938) Mineralogy of three sulphate deposits of Northern Chile. American Mineralogist 23, 669–760.
Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. and Watkin, D.J. (2003) Crystals version 12: Software for guided crystal structure analysis. Journal of Applied Crystallography 36, 1487.
Bishop, J.L., Dyar, M.D., Lane, M.D. and Banfield, J. (2004) Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth. International Journal of Astrobiology 3, 275–285.
Blessing, R.H. (1995) An empirical correction for absorption anisotropy. Acta Crystallographica, A51, 33–38.
Breese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.
Brown, I.D. and Altermatt, D. (1985) Bond valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244–247.
Bruker, (2008) APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison,Wisconsin, USA.
Burns, R.G. (1987) Ferric sulfates on Mars. Pp. E570–E574 in: Journal of Geophysical Research, Proceedings of the seventeenth Lunar and Planetary Science Conference, Part 2. Vol. 92, No. B4, Houston, Texas, USA, 30 March 1987. American Geophysical Union, Washington, DC.
Cejka, J., Sejkora, J., Plasil, J., Bahfenne, S., Palmer, Sara, J., Rintoul, L. and Frost, R.L. (2011) A vibrational spectroscopic study of hydrated Fe3+ hydroxyl-sulphates; polymorphic minerals butlerite and parabutlerite. Spectrochimica Acta A 79, 1356–1363.
Cloutis, E.A., Hawthorne, F.C., Mertzman, S.A., Krenn, K., Craig, M.A., Marcino, D., Methot, M., Strong, J., Mustard, J.F., Blaney, D.L., Bell III J.F. and Vilas, F. (2006) Detection and discrimination of sulphate minerals using reflectance spectroscopy. Icarus 184, 121–157.
Della Ventura, G., Ventruti, G., Bellatreccia, F., Scordari, F. and Cestelli Guidi, M. (2013) FTIR transmission spectroscopy of sideronatrite, a sodiumiron hydrous sulfate. Mineralogical Magazine 77, 499–507.
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in O_O hydrogen bonds. Acta Crystallographica, B44, 341–344.
Frost, R.L., Williams, P.A., Martens, W., Leverett, P. and Kloprogge, J.T. (2004) Raman spectroscopy of basic copper(II) and some complex copper(II) sulfate minerals: implications for hydrogen bonding. American Mineralogist 89, 1130–1137.
Frost, R.L., López, A., Scholz, R., Xi, Y., da Silveira, A.J. and Fernandes Lima, R.M. (2013) Characterization of the sulphate mineral amarantite – Fe3+ 2 (SO4)2O·7H2O using infrared, Raman spectroscopy and thermogravimetry. Spectrochimica Acta A 114, 85–91.
Jerz, J.K. and Rimstidt, J.D. (2003) Efflorescent iron sulfate minerals: Paragenesis, relative stability, and environmental impact. American Mineralogist 88, 1919–1932.
Johnson, J.R., Bell, J.F., Cloutis, E., Staid, M., Farrand, W.H., McCoy, T., Rice, M., Wang, A. and Yen, A. (2007) Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars. Geophysical Research Letters, 34, L13202.
Klingelhöfer, G., Morris, R.V., Bernhardt, B. and Schröde, C. (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306, 1740–1745.
Knittle, E., Phillips, W. and Williams, G. (2001) An infrared and Raman spectroscopic study of gypsum at high pressure. Physics and Chemistry of Minerals 28, 630–640.
Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. American Mineralogist 92, 1–18.
Lane, M.D., Bishop, J.L., Dyar, M.D., King, P.L., Parente, M. and Hyde, B.C. (2008) Mineralogy of the Paso Robles soils on Mars. American Mineralogist 93, 728–739.
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H_O hydrogen bond lengths in minerals. Monatshefte für Chemie 130, 1047–1059.
McCollom, T.M., Ehlmann, B.L., Wang, A., Hynek, B.M., Moskowitz, B. and Berquó , T.S. (2014) Detection of iron substitution in natroalunitenatrojarosite solid solutions and potential implications for Mars. American Mineralogist 99, 948–964.
Mills, S.J., Nestola, F., Kahlenberg, V., Christy, A.G., Hejny, C. and Redhammer, G.J. (2013) Looking for jarosite on Mars: The low-temperature crystal structure of jarosite. American Mineralogist 98, 1966–1971.
Murphy, P.J., Smith, A.M.L., Hudson-Edwards, K.A., Dubbin, W.E. and Wright, K. (2009) Raman and IR spectroscopic studies of alunite-supergroup compounds containing Al, Cr3+, Fe3+ and V3+ at the B site. The Canadian Mineralogist 47, 663–681.
Nakamoto, K. (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Fifth edition. Wiley and Sons, New York.
Ngenda, R.B., Segers, L. and Kongolo, P.K. (2009) Base metals recovery from zinc hydrometallurgical plant residues by digestion method. Hydrometallurgy Conference 2009, The Southern African Institute of Mining and Metallurgy, Johannesburg, pp. 17–29.
Nordstrom, D.K., Alpers, C.N., Ptacek, C.J. and Blowes D.W. (2000) Negative pH and extremely acidic mine waters from Iron Mountain, California. Environmental Science and Technology 34, 254–258.
Omori, K. and Kerr, P.F. (1963) Infrared studies of saline sulphate minerals. Geological Society of America Bulletin 74, 709–734.
Palache, C., Berman, H. and Frondel, C. (1951) Dana’s System of Mineralogy. John Wiley and Sons, Inc., New York.
Ross, S.D. (1974) Sulphates and other oxy-anions of group VI. Pp. 423–444. in: The Infrared Spectra of Minerals (V.C. Farmer, editor), The Mineralogical Society, London.
Ruhl, A.S. and Kranzmann, A. (2012) Corrosion behavior of various steels in a continuous flow of carbon dioxide containing impurities. International Journal of Greenhouse Gas Control 9, 85–90.
Saunders, V.R., Dovesi, R., Roetti, C., Orlando, R., Zicovich-Wilson, C.M., Harrison, N.M., Doll, K., Civalleri, B., Bush, L.J., D’Arco, Ph. and Llunell, M. (2003) CRYSTAL 2003 user’s manual. University of Torino, Turin, Italy.
Scordari, F. (1978) The crystal structure of hohmannite, Fe2(H2O)4[(SO4)2O]·4H2O and its relationship to ama rant i t e , Fe 2(H2O)4 [ ( SO4 ) 2O]·3H2O. Mineralogical Magazine 42, 144–146.
Scordari, F., Ventruti, G. and Gualtieri, A.F. (2004) The structure of metahohmannite, Fe2 3+[O(SO4)2]4H2O, by in situ synchrotron powder diffraction. American Mineralogist 89, 265–370.
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical Structural Mineral Classification System, 9th Edition. Schweizerbart, Stuttgart, Germany, 870 pp.
Ventruti, G., Scordari, F., Della Ventura, G., Bellatreccia, F., Gualtieri, A.F. and Lausi, A. (2013) The thermal stability of sideronatrite and its decomposition products in the system Na2O–Fe2O3–SO2–H2O. Physics and Chemistry of Minerals 40, 659–670.
Ventruti, G., Della Ventura, G., Scordari, F., Susta, U. and Gualtieri, A.F. (2015) In situ high-temperature XRD and FTIR investigation of hohmannite, a water-rich Fe-sulfate, and its decomposition products Journal of Thermal Analysis and Calorimetry 119, 1793–1802.
Vicenzi, E.P., Fries, M., Fahey, A., Rost, D., Greenwood, J.P. and Steele, A. (2007) Detailed elemental, mineralogical, and isotopic examination of jarosite in Martian meteorite MIL 03346. 38th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXVIII), March 12–16. 2007, League City, Texas, USA. LPI Contribution No. 1338, p.2335.
Welch, S.A., Christy, A.G., Kirste, D., Beavis, S.G. and Beavis, F. (2007) Jarosite dissolution I – trace cation flux in acid sulfate soils. Chemical Geology 245, 183–197.
Welch, S.A., Kirste, D., Christy, A.G., Beavis, F.R. and Beavis, S.G. (2008) Jarosite dissolution II – reaction kinetics, stoichiometry and acid flux. Chemical Geology 254, 73–86.
Welch, S.A., Christy, A.G., Isaacson, L. and Kirste, D. (2009) Mineralogical control of rare earth elements in acid sulfate soils. Geochimica et Cosmochimica Acta 73, 44–64.


Structure refinement, hydrogen-bond system and vibrational spectroscopy of hohmannite, Fe 3+ 2 [O(SO4)2]·8H2O

  • G. Ventruti (a1), G. Della Ventura (a2), R. Orlando (a3) and F. Scordari (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed