Skip to main content Accessibility help
×
Home

Species sensitivity of zeolite minerals for uptake of mercury solutes

  • L. S. Campbell (a1), A. Chimedtsogzol (a2) and A. Dyer (a2)

Abstract

The uptake of inorganic Hg2+ and organometallic CH3Hg+ from aqueous solutions by 11 different natural zeolites has been investigated using a batch distribution coefficient (K d) method and supported by a preliminary voltammetric study. The effect of mercury concentration on the K d response is shown over an environmentally appropriate concentration range of 0.1–5 ppm inorganic and organometallic Hg using a batch factor of 100 ml g-1 and 20 h equilibration. Analcime and a Na-chabazite displayed the greatest methylmercury uptakes (K d values at 1.5 ppm of 4023 and 3456, respectively), with mordenite as the smallest at 578. All uptake responses were greater for methylmercury than for the inorganic mercuric nitrate solutions, suggesting a distinctive sensitivity of zeolites to reaction with different types of solute species. It is likely that this sensitivity is attributable to the precise nature of the resultant Hg-zeolite bonds. Additionally, both the Si-Al ratio and the Na content of the initial natural zeolite samples are shown to influence the K d responses, with positive correlations between K d and Na content for all zeolites excluding mordenite.

Copyright

Corresponding author

Footnotes

Hide All

Institute for Geological Sciences, Mineralogy/Geochemistry, Von-Seckendorff-Platz 3, Martin Luther University, 06120 Halle/Saale, Germany

Footnotes

References

Hide All
Baeyens, W., Meuleman, C., Muhaya, B. and Leermakers, M. (1998) Behaviour and speciation of mercury in the Scheldt estuary (water, sediments and benthic organisms). Hydrobiologia, 366, 6379.
Bell, N. A., Crouch, D. J. and Jaffer, N. E. (2004) Coordination complexes of 2-thienyl- and 2-furyl-mercurials. Applied Organometallic Chemistry, 18, 135138.
Boudou, A. and Ribeyre, F. (1997) Mercury in the food web: Accumulation and transfer mechanisms. Metal Ions in Biological Systems, 34, 289319.
Campbell, L. S., Chimedtsogzol, A. and Dyer, A. (2004) Methylmercury uptake by natural zeolites. Geochimica et Cosmochimica Ada, 68(11), All5.
Cano-Pavon, J. M., de Torres, A. G., Sanchez-Rojas, F. and Caoada-Rudner, P. (1999) Analytical methods for mercury speciation in environmental and biological samples — an overview. International Journal of Environmental Analytical Chemistry, 75, 93106.
Cotton, F. A. and Wilkinson, G. (1999) Advanced Inorganic Chemistry (6th edition). Wiley, Chichester, UK.
Diederich, H. J., Meyer, S. and Scholz, F. (1994) Automatic adsorptive stripping voltammetry at thin-mercury film electrodes (TMFE). Fresenius Journal of Analytical Chemistry, 349, 670675.
Dopp, E., Hartmann, L. M., Florea, A. M., Rettenmeier, A. W. and Hirner, A. V. (2004) Environmental distribution, analysis, and toxicity of organometal(-loid) compounds. Critical Reviews in Toxicology, 34, 301333.
Dyer, A. (2005) Ion exchange properties of zeolites. Pp. 181204.in: Zeolites and Ordered Mesoporous Materials: Progress and Prospects (Cejka, J. and van Bekkum, H., editors). Studies in Surface Science Catalysis, 157, Elsevier, Amsterdam.
Dyer, A. and Faghihian, H. (1998) Diffusion in heteroionic zeolites: Part 2. Diffusion of water in heteroionic zeolites. Microporous and Mesoporous Materials, 21, 3944.
Dyer, A. and Jozefowicz, L. C. (1992) The removal of thorium from aqueous solutions using zeolites. Journal of Radio analytical and Nuclear Chemistry, 159, 4762.
Dyer, A. and Shaheen, T. (1995) Speciation observed by cation exchange. Science of the Total Environment, 173/174, 301311.
Dyer, A. and Zubair, M. (1998) Ion-exchange in chabazite. Microporous and Mesoporous Materials, 22, 135150.
Dyer, A., Gawad, A., Mikhail, M., Enamy, H. and Afshang, M. (1991) The natural zeolite, laumontite, as a potential material for the treatment of aqueous nuclear wastes. Journal of Radioanalytical Nuclear Chemistry, Letter, 154, 265276.
Dyer, A., Chimedtsogzol, A., Campbell, L. S. and Williams, C. (2006) Uptake of caesium and strontium radioisotopes by natural zeolites from Mongolia. Microporous and Mesoporous Materials (in press).
Fergusson, J. E. (1990) The Heavy Elements: Chemistry, Environmental Impact and Health Effects. Pergamon Press, Oxford, UK.
Fischer, E. and van den Berg, C. M. G. (1999) Anodic stripping voltammetry of lead and cadmium using a mercury film electrode and thiocyanate. Analytica Chimica Ada, 385, 273280.
Garcia, R., Cid, R. and Arriagada, R. (1999) Cr(III) and Hg(II) retention on zeolites. Zeolite nature and process variables influence. Boletin de la Sociedad Chilena de Quimica, 44, 435442.
Gebremedhin-Haile, T., Olguin, M. T. and Solache-Rios, M. (2003) Removal of mercury ions from mixed aqueous metal solutions by natural and modified zeolitic minerals. Water Air Soil Pollution, 148, 179200.
Godelitsas, A. and Armbruster, T. (2003) HEU-type zeolites modified by transition elements and lead. Microporous and Mesoporous Materials, 61, 324.
Haidouti, C. (1997) Inactivation of mercury in contaminated soils using natural zeolites. Science of the Total Environment, 208, 105109.
Hammerschmidt, C. R. and Fitzgerald, W. F. (2004) Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science and Technology, 38, 14871495.
Harjula, R., Letho, J., Pothius, J. H., Dyer, A. and Townsend, R. P. (1993) Ion exchange in zeolites. Part 2. Hydrolysis and dissolution of zeolites NaX and NaY. Journal of the Chemical Society, Faraday Transactions, 89, 971978.
Ireland-Ripert, J., Bermond, A. and Ducauze, C. (1982) Determination of methylmercury in the presence of inorganic mercury by anodic stripping voltammetry. Analytica Chimica Ada, 143, 249254.
Jay, J. A., Morel, F. M. M. and Hemond, H. F. (2000) Mercury speciation in the presence of polysulfides. Environmental Science and Technology, 34, 21962200.
Jurng, J., Lee, T. G., Lee, G. Y., Lee, S. J., Kim, B. H. and Seier, I (2002) Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere, 47, 907913.
Lawson, N. M., Mason, R. P. and Laporte, J. M. (2001) The fate and transport of mercury, methylmercury and other trace metals in Chesapeake Bay Tributaries. Water Research, 35, 501515.
Leiva-Presa, A., Capdevila, M., Cols, N., Atrian, S. and Gonzalez-Duarte, P. (2004) Chemical foundation of the attenuation of methylmercury(II) cytotoxicity by metallothioneins. European Journal of Biochemistry, 271, 13231328.
Meier, W. M., Olson, D. H. and Baerlocher, C. (1996) Atlas of zeolite structure types. Zeolites, 17, 1229.
Meyer, S., Scholtz, F. and Trittler, R. (1996) Determination of inorganic ionic mercury down to 5 x 10∼14 mol I“1 by differential pulse anodic stripping voltammetry. Fresenius Journal of Analytical Chemistry, 356, 247252.
Misaelides, P., Godelitsas, A., Charistos, V., Ioannou, D. and Charistos, D. (1994) Heavy-metal uptake by zeoliferous rocks from Metaxades, Thrace, Greece – an exploratory study. Journal of Radioanalytical Nuclear Chemistry, 183, 159166.
Misaelides, P., Godelitsas, A., Kossionidis, S. and Manos, G. (1996) Investigation of chemical pro¬cesses at mineral surfaces using accelerator-based and surface analytical techniques: Heavy metal sorption on zeolite crystals. Nuclear Instrumemnts and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 113, 296299.
Morency, J. R. (2002) Zeolite sorbent that effectively removes mercury from flue gases. Filtration and Separation, 39, 2426.
Moreno-Gutierrez, B. Y. and Olguin, M. T. (2003) Mercury removal from aqueous and organo-aqueous solutions by natural Mexican erionite. Journal of Radioanalytical Nuclear Chemistry, 256, 345348.
Paquette, K. E. and Helz, G. R. (1997) Inorganic speciation of mercury in sulfidic waters: The importance of zero-valent sulfur. Environmental Science and Technology, 31, 21482153.
Rajec, P., Macaek, F. and Misaelides, P. (1999) Sorption of heavy metals and radionuclides on zeolites and clays. Pp. 353363.in: Natural Microporous Materials in Environmental Technology: Proceedings of the NATO Advanced Research Workshop on the Application of Natural Microporous Materials for Environmental Technology (Misaelides, P., editor), Slovakia, 1998 (NATO Science Series: E: Applied Sciences). Kluwer Academic Publishers, Dordrecht, The Netherlands.
Ravichandran, M. (2004) Interactions between mercury and dissolved organic matter – a review. Chemosphere, 55, 319331.
Reddy, M. M. and Aiken, G. R. (2001) Fulvic acid-sulfide ion competition for mercury ion binding in the Florida Everglades. Water Air Soil Pollution, 132, 89104.
Ribeiro, C. A. O., Rouleau, C., Pelletier, E., Audet, C. and Tjalve, H. (1999) Distribution kinetics of dietary methylmercury in the Arctic Char. (Salvelinus alpinus). Environmental Science and Technology, 33, 902907.
Rice, S. B., Papke, K. G. and Vaughan, D. E. W. (1992) Chemical controls on ferrierite crystallization during diagenesis of silicic pyroclastic rocks near Lovelock, Nevada. American Mineralogist, 77', 314328.
Sarbak, Z. (1996) Desulfurization of ethanethiol over cadmium and mercury modified zeolite NaX. Applied Catalysis A – General, 147, 4754.
Sersen, F., Cik, G., Havranek, E. and Sykorova, M. (2005) Bio-remediation by natural zeolite on plants cultivated in a heavy metal-contaminated medium. Fresenius Environmental Bulletin, 14, 1317.
Soupioni, M., Symeopoulos, B., Athanasiou, J., Gioulis, A., Koutsoukos, P. and Tsolis-Katagas|P. (1999) A preliminary study of mercury uptake by a Greek zeoliferous rock. Pp. 365369.in: Natural Microporous Materials in Environmental Technology: Proceedings of the NATO Advanced Research Workshop on the Application of Natural Microporous Materials for Environmental Technology (Misaelides, P., editor), Slovakia, 1998 (NATO Science Series: E: Applied Sciences). Kluwer Academic Publishers, Dordrecht, The Netherlands.
Tankawanit, S., Rangsriwatanon, K. and Dyer, A. (2005) Ion exchange of Cu2+, Ni2+, Pb2+ and Zn2+ in analcime synthesized from Thai perlite. Microporous and Mesoporous Materials, 79, 171175.
Tercier, M.-L., Parthasarathy, N. and Buffle, I. (1995) Reproducible, reliable and rugged Hg-plated Ir-based microelectrode for in situ measurements in natural waters. Electro analysis, 7, 5563.
Townsend, R. P. and Loizidou, M. (1984) Ion exchange properties of natural clinoptilolite, ferrierite and mordenite, 1 Sodium-ammonium equilibria. Zeolites, 4, 191195.
Tsitsishvili, G. V., Andronikashvili, T. G., Kirov, G. N. and Filizova, L. D. (1992) Natural Zeolites. Ellis Horwood, Chichester, UK.
Walcarius, A., Devoy, J. and Bessiere, J. (1999) Electrochemical recognition of selective mercury adsorption on mineral. Environmental Science and Technology, 33, 42784284.
Weitkamp, J., Kleinschmit, P., Kiss, A. and Berke, C. H. (1993) The hydrophobieity index – a valuable test for probing the surface properties of zeolite adsorbents and catalysts. Pp. 7988 in: Proceedings of the 9th International Conference on Zeolites, Montreal, 1992 (Von Ballmoos, R., Higgins, J. B. and Treacy, M. M. J., editors). Butterworth-Heinemann, Stoneham, MA, USA.
Wilhelm, M., Deeken, S., Berssen, E., Saak, W., Lutzen, A., Koch, R. and Strasdeit, H. (2004) The first structurally authenticated organomercury(l+) thioether complexes – Mercury-carbon bond activa¬tion related to the mechanism of the bacterial enzyme organomercurial lyase. European Journal of Inorganic Chemistry, 2301–2312.
Wilkin, R. T. and Barnes, H. L. (1998) Solubility and stability of zeolites in aqueous solution: I. Analcime, Na-, and K-clinoptilolite. American Mineralogist, 83, 746761.
Yin, Y., Allen, H. E., Huang, C. P., Sparks, D. L. and Sanders, P. F. (1997) Kinetics of mercury (II) adsorption and desorption on soil. Environmental Science and Technology, 31, 496503.
Zhen, S. Y. and Seff, K. (1999) Crystal structure of anhydrous NH +-exchanged zeolite X partially reacted with HgCl2 vapor. Cationic chloromercuric clusters, regular octahedral Hg(II), and regular trigonal Hg(II). Journal of Physical Chemistry B, 103, 1040910416.

Keywords

Species sensitivity of zeolite minerals for uptake of mercury solutes

  • L. S. Campbell (a1), A. Chimedtsogzol (a2) and A. Dyer (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed