Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:12:15.617Z Has data issue: false hasContentIssue false

Some aspects of the crystal-chemistry of apatites

Published online by Cambridge University Press:  05 July 2018

Yu Liu
Affiliation:
Wuhan Institute of Chemical Technology, 430074-Hubei, P.R. China
Paola Comodi
Affiliation:
Dipartimento di Scienze della Terra, Università di Perugia, 06100-Perugia, Italia

Abstract

Twenty-four apatite (Ap) samples mainly from carbonatite and alkaline rocks were studied by electron microprobe, IR spectroscopy and X-ray powder diffraction. The crystal structures of six were refined using single crystal X-ray diffraction data to R = 1.7-2.5%. The generally high Si content of Ap from carbonatite and alkaline rock has been related to the presence of characteristic Si-O absorptions in IR spectra. Bands, whose intensities change with Si content, were observed at 520, 650, 930 and 1160 cm-1. The IR absorption features of v3 CO3 mode of Ap from carbonatite are different from those of v3 CO3 mode of Ap from sedimentary rock. This phenomenon is probably due to the different effects of F and OH on the CO3 substitution for PO4. The structural refinements yield more information on the CO3=PO4 substitution, which is now supported also by the geometrical evolution of the tetrahedron with increasing CO3 content: the tetrahedral size decreases and the angle distortion increases with C-content. It is likely that the triangular planar CO3 group is disordered on the four faces of PO43-tetrahedron. It was observed also that Ap from early-stage carbonatite is OH-dominant with considerable LREE, Si, CO3 and negligible Mn, Fe, Mg, K, S and C1 contents. They have high Sr/Mn, Si/S and C/S ratios.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, D. S. and Nixon, P. H. (1989) High-Ca, low alkali carbonatite volcanism at Fort Portal, Uganda. Contrib. Mineral. Petrol., 103, 166–77.Google Scholar
Binder, G. and Troll, G. (1989) Coupled anion substitution in natural carbon-bearing apatites. Ibid., 101, 394-401.Google Scholar
Cundari, A. and Ferguson, A. K. (1991) Petrogenetic relationships between melilitite and lamproite in the Roman Comagmatic Region: the lavas of S. Venanzo and Cupaello. Ibid., 107, 343-57.Google Scholar
Elliott, J. C., Holcomb, D. W., and Young, R. A. (1985) Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel. Calcif. Tissue Inter., 37, 372–5.Google Scholar
Featherstone, J. D. B., Pearson, S., and LeGeros, R. Z. (1984) An infrared method for quantification of carbonate in carbonated apatites. Caries Res., 18, 636.Google Scholar
Fowler, B. O. (1974) Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxylapatites utilizing isotopic substitution. lnorg. Chem., 13, 194207.Google Scholar
Hogarth, D. D. (1988) Chemical composition of fluora-patite and associated minerals from skarn near Gatineau, Quebec. Mineral. Mag., 52, 347–58.Google Scholar
Hogarth, D. D. (1989) Pyrocholore, apatite and amphibole: distinctive minerals in carbonatite. In Carbonatites— genesis and evolution, (K.Bell, ed.). Unwin Hyman Ltd, London, 120-48.Google Scholar
Hughes, J. M., Cameron. M., and Crowley, K. D. (1989) Structural variations in natural F, OH, and CI apatites. Am. Mineral., 74, 870–76.Google Scholar
Hughes, J. M., Cameron. M., and Crowley, K. D. (1991a) Ordering of divalent cations in the apatite structure: Crystal structure refinements of natural Mnand Srbearing apatite. Ibid., 76, 1857-62.Google Scholar
Hughes, J. M., Cameron. M., and Mariano, A. N. (1991b) Rare-earthelement ordering and structural variations in natural rare-earth-bearing apatites. Ibid., 76, 1165-73.Google Scholar
International Tables for X-ray Crystallography (1974) Vol. 4, Kynoch Press, Birmingham, G.B.Google Scholar
Keller, J. and Schleicher, H. (1990) Volcanism and petrology of the Kaiserstuhl. International Volcano-logical Congress Mainze (FRG), Post-Conference Excursion 2B.Google Scholar
La Volpe, L. and Principe, C. (1991) Comments on ‘Monte Vulture Volcano (Basilicata, Italy): an analysis of morphology and volcaniclastic facies’ by J. E. Guest, A. M. Duncan and D. K. Chester. Bull. Volcanol., 53, 222–7.Google Scholar
Liu, Y. (1993) Some anomalous crystal-chemistry features of the apatite from carbonatite of Fort Portal, Uganda. (In prep.)Google Scholar
Liu, Y. K. (1981) Some mineralogical characters of fluorapatite in different genetic types. Bull. Soc. Franc. Mineral. CrystaU., 104, 530–5.Google Scholar
McArthur, J. M. (1990) Fluorine-deficient apatite. Mineral. Mag., 54, 508–10.Google Scholar
McClellan, G. H. (1980) Mineralogy of carbonate fluorapatites. J. Geol. Soc., 137, 675–81.Google Scholar
Nàray-Szabò, S. (1930) The structure of apatite (CaF)-Ca4(PO4)3. Zeits. Kristallogr., 75, 387–8.Google Scholar
Nash, W. P. (1984) Phosphate minerals in terrestrial igneous and metamorphic rocks. In Phosphate Minerals, (J. O. Nriagu and P. B. Moore, eds.). Springer-Verlag, New York, 215-41.Google Scholar
Nathan, Y. (1984) The mineralogy and geochemistry of phosphorites. In Phosphate Minerals, (J. O. Nriagu and P. B. Moore, eds.). Springer-Verlag, New York, 275-91.Google Scholar
North, A. C. T., Phillips, D. C., and Mathews, F. S. (1968) A semi-empirical method of absorption correction. Acta Crystallogr., A24, 351-9.Google Scholar
Robinson, K., Gibbs, G. V., and Ribbe, P. H. (1971) Quadratic elongation: a quadratic measure of distortion in coordination polyhedra. Science, 172, 567–70.Google Scholar
Roeder, P. L., MeArthur, D., Ma, X. P., and Palmer, G. R. (1987) Cathodoluminescence and microprobe study of rare-earth elements in apatite. Am. Mineral., 72, 801–11.Google Scholar
Schuffert, J. D., Kastner, M., Emanuele, G., and Jahnke, R. A. (1990) Carbonateion substitution in francolite: a new equation. Geochim. Cosmochim. Acta, 54, 2323–28.Google Scholar
Sheldrick, G. M. (1976) SHELX76, Program for crystal structure determinations. University of Cambridge, Cambridge, UK.Google Scholar
Silva, A. B. da, Marchetto, M., and Souza, O. M. de. (1979) Geologia do complexo carbonatitieo de Araxa (Barreiro), Minas Gerais. Mineraqao Metalurgia, 43, (415), 1418.Google Scholar
Sommerauer, J. and Katz-Lehnert, K. (1985) A new partial substitution mechanism of CO3 2−/CO3OH3− and SiO4 4− for the pO4 3− group in hydroxyapatite from the Kaiserstuhl alkaline complex (SW-Germany). Contrib. Mineral. Petrol., 91, 360–8.Google Scholar
Stoppa, F. and Lavecchia, G. (1992) Late Pleistocene ultra-alkaline magmatic activity in the Umbria-Latium region (Italy): An overview. J. Volcan. Geoth. Res., 52, (in press).Google Scholar
Stoppa, F. and Liu, Y. (1993) Chemical characteristics of the apatites from Italian ultra-alkaline rocks and their petrological implications. (In prep.)Google Scholar
Stoppa, F. and Lupini, L. (1991) Caratteristiche identificative di una roccia carbonatitica del pleistocene superiore affiorante presso Polino (TR-Umbria). Studi geolo-gici Camerti, Vol. Speciale, 383-98.Google Scholar
Turbeville, B. N. (1992) Relationships between chamber margin accumulates and pore liquids: evi-dence from arrested in situ processes in ejecta, Latera caldera, Italy. Contrib. Mineral. Petrol., 110, 429–41.Google Scholar
Vignoles, M., Bonel, G., Holcomb, D. W., and Young, R. A. (1988) Influence of preparation conditions on the composition of type B carbonated hydroxylapa-tite and on the localization of the carbonate ions. Calcif. Tissue Intern., 43, 3340.Google Scholar