Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T10:21:08.058Z Has data issue: false hasContentIssue false

Some aluminous clinopyroxenes from Vesuvius and Monte Somma, Italy

Published online by Cambridge University Press:  05 July 2018

S. Rahman*
Affiliation:
Department of Geology, Dacca University, Bangladesh

Summary

Aluminous Ca-rich clinopyroxenes (5.95-7.63 wt % Al2O3) are next in abundance to leucite in the basic alkaline potassic lavas from Monte Somma and Vesuvius, Italy, and occur as phenocrysts (1 to 7 mm), micropbenocrysts (< 1 mm), and groundmass granules. Zoning of various types is a conspicuous feature in these pyroxenes. Optical and chemical data are presented and a comparison is made between these pyroxenes and similar ones from alkali basalts. It is known from published data that Al2O3 fluctuates strongly in the oscillatory zones of Vesuvian pyroxenes. This can be explained as due to temperature variation in the magma, to magma variation in silica content due to contamination, to oscillations in leucite precipitation, or to a combination of these factors. Of these three factors, oscillations in leucite precipitation, as it appears, would be more effective than the others since it would have a greater control over Si/A1 availability in the magma.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Dept. of Geology, Makerere University, Kampala, Uganda.

References

Alfani, (M.), 1934. L'augite pneumatolitica raccolta sulle lave del fondo del cratere Vesuviano nel 1929. Periodica Min. Roma, 5, 77-96.Google Scholar
Aoki, (K.), 1964. Clinopyroxenes from alkaline rocks of Japan. Amer. Min. 49, 1199-223.Google Scholar
Bence, (A. E.) and Papme, (J. J.), 1972. Pyroxenes as recorders of lunar basalt petrogenesis: Chemical trends due to crystal-liquid interaction. Proc. Third Lunar Sci. Conf. 1, 431-69, M.I.T. Press.Google Scholar
Boesen, (R. S.), 1964. The clinopyroxenes of a monzonitic complex at Mount Dromedary, New South Wales. Amer. Min. 49, 1435-57.Google Scholar
Boyd, (F. R.) and England, (J. L.), 1963. Some effects of pressure on phase relations in the system MgO-Al2O3-SiO2. Carnegie Inst. Wash. Year Book 62, 121-4.Google Scholar
Brown, (G. M.), 1957. Pyroxenes from the early and middle stages of fractionation of the Skaergaard intrusion, East Greenland. Min. Mag. 231, 511-43.Google Scholar
Brown, (G. M.), 1967. Mineralogy of basaltic rocks. Basalts: The Poldervaart treatise on rocks of basaltic composition (Edited by H. H. HESS and ARIE POLDERVAART), 1, 103-62. Interscience Publishers.Google Scholar
Brown, (G. M.), and Vincent, (E. A.), 1963. Pyroxenes from the late stages of fractionation of the Skaergaard intrusion, East Greenland. Journ. Petrology, 4, 175-97.CrossRefGoogle Scholar
Carmichael, (I. S. E.), 1962. Pantelleritic liquids and their phenocrysts. Min. Mag. 33, 86-113.Google Scholar
Casoria, (F.), 1907. Die alten Bodenarten der Gegend vom Monte Somma. (Abstr. of Annali R. Scuola Sup. d'Agricoltura di Portici, 1904. 6, sep.). Zeits. Kryst. Min. 42, 88.Google Scholar
Clark, (S. P. Jr.), Schairer, (J. F.), and De Neufville, (J.), 1962. Phase relations in the system CaMgSi2O6-CaAl2SiO2SiO2 at low and high pressure. Carnegie Inst. Wash. Year Book 61, 19-68.Google Scholar
Deer, (W. A.), Howie, (R. A.), and Zussman, (J.), 1963. Rock forming minerals. 2. Chain silicates. Longmans, London.Google Scholar
Grab, (F. G. F.), 1973. The zoned clinopyroxenes of the Shiant Isles Sill, Scotland. Journ. Petrology, 14, 203-30.Google Scholar
Hess, (H. H.), 1949. Chemical composition and optical properties of common clinopyroxenes. Amer. Min. 34, 621-66.Google Scholar
Hijikata, (K.) and Onuma, (K.), 1969. Phase equilibrium of the system CaMgSi2O3CaFe3+AlSiO6 in air. Journ. Japanese Assoc. Min. Petr. Econ. Geol. 62, 209-17.CrossRefGoogle Scholar
Hori, (F.), 1954. Effects of constituent cations on the optical properties of clinopyroxenes. Univ. Tokyo Coll. Gen. Educ. Sci. Papers, 4, 71-83.Google Scholar
Huckenholz, (H. G.), Schairer, (J. F.), and Yoder, (J. S.), 1969. Synthesis and stability of ferridiopside. Min. Soc. Amer. Spec. Paper, 2, 163-77.Google Scholar
Hytönen, (K.) and Schairer, (J. F.), 1961. The plane enstatite-anorthite-diopside and its relations to basalts. Carnegie Inst. Wash. Year Book 60, 125-41.Google Scholar
Khalil, (S. O.), 1966. Geochemical investigations on the lavas of Ischia. Ph.D. Thesis, Manchester University, England.Google Scholar
Kushiro, (I.), 1960. Si-Al relations in clinopyroxenes from igneous rocks. Amer. Journ. Sci. 258, 548-54.CrossRefGoogle Scholar
Kushiro, (I.), and Yoder, (H. S. Jr.), 1964. Experimental studies on the Basalt-Eclogite transformation. Carnegie Inst. Wash. Year Book 63, 108-14.Google Scholar
Lacroix, (A.), 1917. Les roches grenues d'un magma leucitique étudiées a l'aide des blocs holocristalins de la Somma. Compt. Rend. Acad. Sci. Paris, 165, 205-16.Google Scholar
Le Bas, (M. J.), 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. Amer. Journ. Sci. 260, 267-88.CrossRefGoogle Scholar
Muir, (I. D.), 1951. The clinopyroxenes of the Skaergaard intrusion, eastern Greenland. Min. Mag. 29, 690-714.Google Scholar
Muir, (I. D.), and Tilley, (C. E.), 1961. Mugearites and their place in alkali igneous rock series. Journ. Geol. 69, 186-203.CrossRefGoogle Scholar
Muir, (I. D.), and Tilley, (C. E.), 1964. Basalts from the northern part of the Rift Zone of the Mid-Atlantic Ridge. Journ. Petrology, 5, 409-34.CrossRefGoogle Scholar
Muller, (K.), 1936. Augit vom Vesuv. Zentr. Min. ,4bt., 4, 116-22.Google Scholar
Murray, (R. J.), 1954. The clinopyroxenes of the Garbh Eilean sill, Shiant Isles. Geol. Mag. 91, 17-31.CrossRefGoogle Scholar
Poldervaart, (A.) and Hess, (H. H.), 1951. Pyroxenes in the crystallization of basaltic magma. Journ. Geol. 59, 472-89.CrossRefGoogle Scholar
Savelli, (C.), 1967. The problem of rock assimilation by Somma-Vesuvius Magma: I. Composition of Somma and Vesuvius lavas. Contr. Min. Petr. 16, 328-53.CrossRefGoogle Scholar
Thompson, (R. N.), 1972. Oscillatory and sector zoning in augite from a Vesuvian lava. Carnegie Inst. Wash. Year Book 71, 463-70.Google Scholar
Tilley, (C. E.), 1938. Aluminous pyroxenes in metamorphosed limestones. Geol. Mag. 75, 81-6.CrossRefGoogle Scholar
Wasntngton, (H. S.) and Merwin, (H. E.), 1921. Note on augite from Vesuvius and Etna. Amer. Journ. Sci. (ser. 5), 201, 2030.CrossRefGoogle Scholar
Wilkinson, (J. F. G.), 1957. The clinopyroxenes of a differentiated teschenite sill near Gunnedah, New South Wales. Geol. Mag. 94, 123-34.CrossRefGoogle Scholar
Wilkinson, (J. F. G.), 1966. Clinopyroxenes from the Square Top intrusion, Nundle, New South Wales. Min. Mag. 35, 1061-70.Google Scholar
Zambonini, (F.), 1910. Mineralogia Vesuviana. Atti. R. Accad. Sci. Fis. Mat., Napoli, Ser. 2A, 14, Nr. 7.Google Scholar
Zambonini, (F.), 1936. Mineralogia Vesuviana (Rosenberg and Sellier), Torino.Google Scholar