Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T03:55:49.729Z Has data issue: false hasContentIssue false

Selsurtite, (H3O)12Na3(Ca3Mn3)(Na2Fe)Zr3□Si[Si24O69(OH)3](OH)Cl⋅H2O, a new eudialyte-group mineral from the Lovozero alkaline massif, Kola Peninsula, Russia

Published online by Cambridge University Press:  09 December 2022

Nikita V. Chukanov*
Affiliation:
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Sergey M. Aksenov
Affiliation:
Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman str., Apatity 184209 Russia Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman str., Apatity 184209 Russia
Olga N. Kazheva
Affiliation:
Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman str., Apatity 184209 Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry A. Varlamov
Affiliation:
Institute of Experimental Mineralogy RAS, Chernogolovka, 142432 Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18–2, 119071 Moscow, Russia
Svetlana A. Vozchikova
Affiliation:
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, Universitetskaya Nab. 7/9, 199034 St Petersburg, Russia
*
*Author for correspondence: Nikita V. Chukanov, Email: chukanov@icp.ac.ru

Abstract

The new eudialyte-group mineral selsurtite, ideally (H3O)12Na3(Ca3Mn3)(Na2Fe)Zr3□Si[Si24O69(OH)3](OH)Cl⋅H2O, was discovered in metasomatic peralkaline rock from the Flora mountain, northern spur of the Selsurt mountain, Lovozero alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite and orthoclase, as well as accessory lorenzenite, calciomurmanite, natrolite, lamprophyllite and sergevanite. Selsurtite occurs as brownish-red to reddish-orange, equant or flattened on (0001) crystals up to 2 mm across and elongate crystals up to 3 cm long. The main crystal forms are {0001}, {11$\bar{2}$0}, and {10$\bar{1}$1}. Selsurtite is brittle, with the Mohs’ hardness of 5. No cleavage is observed. Parting is distinct on (001). D(meas) = 2.73(2) and D(calc) = 2.722 g⋅cm–3. Selsurtite is optically uniaxial (–), with ω = 1.598(2) and ɛ = 1.595(2). The chemical composition is (wt.%, electron microprobe): Na2O 6.48, K2O 0.27, MgO 0.10, CaO 6.83, MnO 4.73, FeO 1.18, SrO 1.88, La2O3 0.57, Ce2O3 1.07, Pr2O3 0.20, Nd2O3 0.44, Al2O3 0.29, SiO2 50.81, ZrO2 13.50, HfO2 0.45, TiO2 0.61, Nb2О5 1.10, Cl 1.01, SO3 0.29, H2O 8.10, –O≡Cl –0.23, total 99.68. The empirical formula is H25.94Na6.03K0.16Mg0.07Ca3.51Sr0.52Ce0.19La0.10Nd0.08Pr0.03Mn1.91Fe0.47Ti0.22Zr3.16Hf0.06Nb0.24Si24.40Al0.16S0.10Cl0.82O79.13. The crystal structure was determined using single-crystal X-ray diffraction data and refined to R = 0.0484. Selsurtite is trigonal, space group R3, with a = 14.1475(7) Å, c = 30.3609(12) Å, V = 5262.65(7) Å3 and Z = 3. Infrared and Raman spectra show that hydronium cations are involved in very strong hydrogen bonds and form Zundel- and Eigen-like complexes. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)(hkl)] are: 11.38 (56)(101), 7.08 (59)(110), 5.69 (36)(202), 4.318 (72)(205), 3.793 (36)(303), 3.544 (72)(027, 220, 009), 2.970 (100)(315) and 2.844 (100)(404). The mineral is named after the discovery locality.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R Kampf

References

Asmis, K.R., Pivonka, N.L., Santambrogio, G., Brümmer, M., Kaposta, C., Neumark, D.M. and Wöste, L. (2003) The gasphase infrared spectrum of the protonated water dimer. Science, 299, 13751381.CrossRefGoogle ScholarPubMed
Asthagiri, D., Pratt, L.R. and Kress, J.D. (2005) Ab initio molecular dynamics and quasichemical study of H+(aq). Proceedings of the National Academy of Sciences of the United States of America, 102, 67046708. www.pnas.org_cgi_doi_10.1073_pnas.0408071102CrossRefGoogle ScholarPubMed
Biswas, R., Carpenter, W., Fournier, J.A., Voth, G.A. and Tokmakoff, A. (2017) IR spectral assignments for the hydrated excess proton in liquid water. Journal of Chemical Physics, 146, paper 154507. https://doi.org/10.1063/1.4980121CrossRefGoogle ScholarPubMed
Brandenburg, K. and Putz, H. (2005) DIAMOND Version 3. Crystal Impact GbR., Bonn, Germany.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 146(3), 104107 [in Russian].Google Scholar
Bussen, I.V. and Sakharov, A.S. (1972) Petrology of the Lovozero Alkaline Massif. Nauka Publishing, Leningrad, 296 pp. [in Russian].Google Scholar
Carpenter, W.B. (2020) Aqueous Proton Structures and Dynamics Observed with Nonlinear Infrared Spectroscopy. Ph.D dissertation, the University of Chicago, USA, 346 pp.Google Scholar
Christie, R.A. (2004) Theoretical Studies of Hydrogen-Bonded Clusters. PhD Thesis, University of Pittsburgh, USA, 135 pp.Google Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer, Cham–Heidelberg–Dordrecht–New York–London, 1109 pp. https://doi.org/10.1007/978-3-319-25349-7.CrossRefGoogle Scholar
Chukanov, N.V., Pekov, I.V., Zadov, A.E., Korovushkin, V.V., Ekimenkova, I.A. and Rastsvetaeva, R.K. (2003) Ikranite, (Na,H3O)15(Ca,Mn,REE)6Fe3+2 Zr3(□,Zr)(□,Si)Si24O66(O,OH)6Cl⋅nH2O, and raslakite, Na15Ca3Fe3(Na,Zr)3Zr3(Si,Nb)(Si25O73)(OH,H2O)3(Cl,OH), new eudialyte-group minerals from the Lovizero massif. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 132(5), 2233 [in Russian].Google Scholar
Chukanov, N.V., Rastsvetaeva, R.K., Rozenberg, K.A., Aksenov, S.M., Pekov, I.V., Belakovsky, D.I., Kristiansen, R. and Van, K.V. (2017) Ilyukhinite, (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2⋅3H2O, a new mineral of the eudialyte group. Geology of Ore Deposits, 59, 592600. https://doi.org/10.1134/S1075701517070030.CrossRefGoogle Scholar
Chukanov, N.V., Aksenov, S.M., Pekov, I.V., Belakovskiy, D.I., Vozchikova, S.A. and Britvin, S.N. (2020) Sergevanite, Na15(Ca3Mn3)(Na2Fe)Zr3Si26O72(OH)3⋅H2O, a new eudialyte-group mineral from the Lovozero alkaline massif, Kola Peninsula. The Canadian Mineralogist, 58, 421436, https://doi.org/10.3749/canmin.2000006.CrossRefGoogle Scholar
Chukanov, N.V., Aksenov, S.M., Kazheva, O.N., Pekov, I.V., Varlamov, D.A., Vigasina, M.F., Belakovskiy, D.I., Vozchikova, S.A. and Britvin, S.N. (2022) Selsurtite, IMA 2022-026. CNMNC Newsletter 68. Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.93Google Scholar
Corongiu, G., Kelterbaum, R. and Kochanski, E. (1995) Theoretical Studies of H+(H2O)5. Journal of Physical Chemistry, 99, 80388044, https://doi.org/10.1021/J100020A029.CrossRefGoogle Scholar
Headrick, J.M., Bopp, J.C. and Johnson, M.A. (2004) Predissociation spectroscopy of the argon-solvated H5O2+ “Zundel” cation in the 1000–1900 cm–1 region. Journal of Chemical Physics, 121, 1152311526.CrossRefGoogle ScholarPubMed
Johnsen, O., Ferraris, G., Gault, R.A., Grice, J.D., Kampf, A.R. and Pekov, I.V. (2003) Nomenclature of eudialyte-group minerals. The Canadian Mineralogist, 41, 785794.CrossRefGoogle Scholar
Khomyakov, A.P., Nechelyustov, G.N. and Rastsvetaeva, R.K. (2007) Aqualite, (H3O)8(Na,K,Sr)5Ca6Zr3Si26O66(OH)9Cl, a new eudialyte-group mineral from Inagli alkaline massif (Sakha-Yakutia, Russia), and the problem of oxonium in hydrated eudialytes. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 136(2), 3955 [in Russian].Google Scholar
Kim, J., Schmitt, U.W., Gruetzmacher, J.A., Voth, G.A. and Scherer, N.E. (2002) The vibrational spectrum of the hydrated proton: Comparison of experiment, simulation, and normal mode analysis. Journal of Chemical Physics, 116, 737746.CrossRefGoogle Scholar
Komatsuzaki, T. and Ohmine, I. (1994) Energetics of proton transfer in liquid water. I. Ab initio study for origin of many-body interaction and potential energy surfaces. Chemical Physics, 180, 239269, https://doi.org/10.1016/0301-0104(93)e0424-t.CrossRefGoogle Scholar
Laria, D., Martí, J. and Guàrdia, E. (2004) Protons in supercritical water: A multistage empirical valence bond study. Journal of American Chemical Society, 126, 21252134, https://doi.org/10.1021/ja0373418.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Lykova, I.S., Pekov, I.V., Chukanov, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Zubkova, N.V., Britvin, S.N. and Giester, G. (2016) Calciomurmanite, (Na,□)2Ca(Ti,Mg,Nb)4[Si2O7]2O2(OH,O)2(H2O)4, a new mineral from the Lovozero and Khibiny alkaline complexes, Kola Peninsula, Russia. European Journal of Mineralogy, 24, 835845, https://doi.org/10.1127/ejm/2016/0028–2550.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility concept and its application. The Canadian Mineralogist, 41, 9891002.Google Scholar
McClellan, A.L. and Pimentel, G.C. (1960) Hydrogen Bond. W.H. Freeman & Co Ltd, California University, USA, 475 pp.Google Scholar
Ortega, I.K., Escribano, R., Herrero, V.J., Maté, B. and Moreno, M.A. (2005) The structure and vibration frequencies of crystalline HCl trihydrate. Journal of Molecular Structure, 742, 147152, https://doi.org/10.1016/j.molstruc.2005.01.005.CrossRefGoogle Scholar
Oxford Diffraction (2009) CrysAlisPro. Oxford Diffraction Ltd, Abingdon, Oxfordshire, UK.Google Scholar
Paddison, S.J. and Elliott, J.A. (2005): Molecular modeling of the short-side-chain perfluorosulfonic acid membrane. Journal of Physical Chemistry A, 109, 75837593, https://doi.org/10.1021/jp0524734CrossRefGoogle ScholarPubMed
Petřiček, V, Dušek, M and Palatinus, L (2006) Jana2006. Structure determination software programs. Institute of Physics, Praha, Czech Republic.Google Scholar
Prince, E (editor) (2004) International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables, 3rd Edition. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Rastsvetaeva, R.K., Chukanov, N.V. and Aksenov, S.M. (2012) Eudialyte-group minerals. Nizhny Novgorod State University, Nizhny Novgorod, Russia. 230 pp. [in Russian].Google Scholar
Rastsvetaeva, R.K., Chukanov, N.V., Pekov, I.V. and Vigasina, M.F. (2022) Crystal-chemical features of a cation-ordered potassium analogue of aqualite from the Kovdor massif, Kola Peninsula. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 151(4), 81101 [in Russian].Google Scholar
Sobolewski, A.L. and Domcke, W. (2002a) Hydrated hydronium: a cluster model or solvated electron? Physical Chemistry Chemical Physics, 4, 410, https://doi.org/10.1039/b107373g.CrossRefGoogle Scholar
Sobolewski, A.L. and Domcke, W. (2002b) Ab initio investigation of the structure and spectroscopy of hydronium-water clusters. Journal of Physical Chemistry A, 106, 41584167.CrossRefGoogle Scholar
Vener, M.V. and Librovich, N.B. (2009) The structure and vibrational spectra of proton hydrates: H5O2+ as a simplest stable ion. International Reviews in Physical Chemistry, 28, 407434, https://doi.org/10.1080/01442350903079955.CrossRefGoogle Scholar
Vyas, N.K., Sakore, T.D. and Biswas, A.B. (1978) The structure of 4-methyl-5-sulphosalicylic acid tetrahydrate. Acta Crystallographica, B34, 34863488, https://doi.org/10.1107/S0567740878011413CrossRefGoogle Scholar
Supplementary material: File

Chukanov et al. supplementary material

Chukanov et al. supplementary material

Download Chukanov et al. supplementary material(File)
File 60.3 KB