Skip to main content Accessibility help

Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2

  • Oleg I. Siidra (a1) (a2), Evgeniya A. Lukina (a1), Evgeniy V. Nazarchuk (a1), Wulf Depmeier (a3), Rimma S. Bubnova (a1), Atali A. Agakhanov (a4), Evgeniya Yu. Avdontseva (a1), Stanislav K. Filatov (a1) and Vadim M. Kovrugin (a1)...


The new mineral saranchinaite, ideally Na2Cu(SO4)2, was found in sublimates of the Saranchinaitovaya fumarole, Naboko Scoria Cone, Tolbachik volcano, Kamchatka, Russia. Its discovery and study has enabled the characterization of the thermal decomposition of kröhnkite and provided an insight into the high-temperature behaviour of other kröhnkite-type materials. Saranchinaite is monoclinic, P21, a = 9.0109(5), b = 15.6355(8), c = 10.1507(5) Å, β = 107.079(2)°, V = 1367.06(12) Å3, Z = 8 and R1 = 0.03. Saranchinaite is a unique mineral in that two of its four independent Cu sites display a very unusual Cu2+ coordination environment with two weak Cu–O bonds of ~2.9–3.0 Å, resulting in [4+1+2] CuO7 polyhedra. Each of the Cu-centred polyhedra shares common corners with SO4 tetrahedra resulting in a [Cu4(SO4)8]8– framework with a complex channel system occupied by Na atoms. Saranchinaite is sensitive to moisture and transforms into kröhnkite within one week when exposed to open air at 87% relative humidity and 25°C. High-temperature X-ray diffraction studies were performed for both kröhnkite (from La Vendida mine, Antofagasta Region, Chile) and saranchinaite. During thermal expansion kröhnkite retains its strongly anisotropic character up to its full dehydration and the formation of saranchinaite at ~200°C, which then transforms back into kröhnkite after exposure to open air. The thermal expansion of saranchinaite is more complex than that of kröhnkite. Saranchinaite is stable up to 475°C with subsequent decomposition into tenorite CuO, thénardite Na2SO4 and unidentified phases.


Corresponding author


Hide All

Associate Editor: Ed Grew



Hide All
Balić-Žunić, T., Garavelli, A., Acquafredda, P., Leonardsen, E. and Jakobsson, S.P. (2009) Eldfellite, NaFe(SO4)2, a new fumarolic mineral from Eldfell volcano, Iceland. Mineralogical Magazine, 73, 5157.
Barpanda, P., Oyama, G., Ling, C.D. and Yamada, A. (2014) Kröhnkite-type Na2Fe(SO4)2·2H2O as a novel 3.25 v insertion compound for Na-ion batteries. Chemistry of Materials, 26, 12971299.
Behera, J.N. and Rao, C.N.R. (2006) Amine-templated one-dimensional metal sulfates including a mixed-valent Fe compound with a half-kagome structure. Chemistry – An Asian Journal, 1, 742750.
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.
Burns, P.C. and Hawthorne, F.C. (1995) Coordination geometry pathways in Cu2+ oxysalt minerals. Canadian Mineralogist, 33, 889905.
Chevrier, G., Giester, G. and Zemann, J. (1993) Neutron refinements of NaCu2(H3O2)(SO4)2 and RbCu2(H3O2)(SeO4)2: variation of the hydrogen bond system in the natrochalcite-type series. Zeitschrift für Kristallographie – Crystalline Materials, 206, 714.
Dahlman, B. (1952) The crystal structures of kröhnkite, and brandtite. Arkiv för Mineralogi och Geologi, 1, 339366.
Demartin, F., Campostrini, I., Castellano, C., Gramaccioli, C.M. and Russo, M. (2012) D'ansite-(Mn), Na21Mn2+(SO4)10Cl3 and d'ansite-(Fe), Na21Fe2+(SO4)10Cl3, two new minerals from volcanic fumaroles. Mineralogical Magazine, 76, 27732783.
Domeyko, I. (1879) Kronnkit. Pp. 250252 in: Mineralojía. Libreria Central de Servat I CA, Santiago, Chile.
Driscoll, L.L., Kendrick, E., Wright, A.J. and Slater, P.R. (2016) Investigation into the effect on structure of oxoanion doping in Na2M(SO4)2·2H2O. Journal of Solid State Chemistry, 242, 103111.
Firsova, V.A., Bubnova, R.S. and Filatov, S.K. (2011) Program for the Thermal Expansion Tensor Determination for Crystalline Materials. Institute of Silicate Chemistry of Russian Academy of Science, St. Petersburg, Russia.
Fleck, M. and Kolitsch, U. (2003) Natural and synthetic compounds with kröhnkite-type chains. An update. Zeitschrift für Kristallographie – Crystalline Materials, 218, 553567.
Fleck, M., Kolitsch, U., Hertweck, B., Giester, G., Wildner, M., Prem, M. and Wohlschläger, A. (2002 a) Crystal structures of the double salt dihydrates K2Cd(SeO4)2·2H2O, K2Mn(SO4)2·2H2O, (NH4)2Cu(SeO4)2·2H2O and KFeH(SO4)2·2H2O. Zeitschrift für Kristallographie – Crystalline Materials, 217, 242248.
Fleck, M., Kolitsch, U. and Hertweck, B. (2002 b) Natural and synthetic compounds with kröhnkite-type chains: Review and classification. Zeitschrift für Kristallographie – Crystalline Materials, 217, 435443.
Hawthorne, F.C. and Ferguson, R.B. (1975) Refinement of the crystal structure of kroehnkite. Acta Crystallographica, B31, 17531755.
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals – Crystallography, Geochemistry and Environmental Significance (Alpers, C.N., Jambor, J.L., Nordstrom, D.K., editors). Reviews in Mineralogy & Geochemistry, vol. 40. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.
Kolitsch, U. and Fleck, M. (2005) Second update on compounds with kröhnkite-type chains. Zeitschrift für Kristallographie – Crystalline Materials, 220, 3141.
Kolitsch, U. and Fleck, M. (2006) Third update on compounds with kröhnkite-type chains: The crystal structure of wendwilsonite [Ca2Mg(AsO4)2·2H2O] and the new triclinic structure types of synthetic AgSc(CrO4)2·2H2O and M2Cu(Cr2O7)2·2H2O (M = Rb, Cs). European Journal of Mineralogy, 18, 471482.
Leftwich, K., Bish, D.L. and Chen, C.H. (2012) Crystal structure and hydration/dehydration behavior of Na2Mg(SO4)2·16H2O: A new hydrate phase observed under Mars-relevant conditions. American Mineralogist, 98, 17721778.
Majzlan, J., Zittlau, A.H., Grevel, K.-D., Schliesser, J., Woodfield, B.F., Dachs, E., Števko, M., Chovan, M., Plášil, J., Sejkora, J. and Milovská, S. (2016) Thermodynamic properties and phase equilibria of the secondary copper minerals libethenite, olivenite, pseudomalachite, kröhnkite, cyanochroite, and devilline. Canadian Mineralogist, 53, 937960.
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. Canadian Mineralogist, 19, 441450.
Marinova, D., Kostov, V., Nikolova, R., Kukeva, R., Zhecheva, E., Sendova-Vasileva, M. and Stoyanova, R. (2015) From kröhnkite- to alluaudite-type of structure: Novel method of synthesis of sodium manganese sulfates with electrochemical properties in alkali-metal ion batteries. Journal of Materials Chemistry, A3, 2228722299.
Mills, S.J., Wilson, S.A., Dipple, G.M. and Raudsepp, M. (2010) The decomposition of konyaite: Importance in CO2 fixation in mine tailings. Mineralogical Magazine, 74, 903917.
Mills, S.J., Nestola, F., Kahlenberg, V., Christy, A.G., Hejny, C. and Redhammer, G.J. (2013) Looking for jarosite on Mars: the low-temperature crystal structure of jarosite. American Mineralogist, 98, 19661971.
Nadeem, M.A., Bhadbhade, M., Bircher, R. and Stride, J.A. (2010) Three isolated structural motifs in one crystal: penetration of two 1D chains through large cavities within 2D polymeric sheets. CrystEngComm, 12, 13911393.
Nazarchuk, E.V., Siidra, O.I., Agakhanov, A.A., Lukina, E.A., Avdontseva, E.Y. and Karpov, G.A. (2018) Itelmenite, Na2CuMg2(SO4)4, a new anhydrous sulphate mineral from the Tolbachik volcano. Mineralogical Magazine, in press
Pasha, I., Choudhury, A. and Rao, C.N.R. (2003) The first organically templated linear metal selenite. Journal of Solid State Chemistry, 174, 386391.
Peterson, R.C. and Wang, R. (2006) Crystal molds on Mars: Melting of a possible new mineral species to create Martian chaotic terrain. Geology, 34, 957960.
Saha, D., Madras, G. and Guru Row, T.N. (2011) Manipulation of the hydration levels in minerals of sodium cadmium bisulfate toward the design of functional materials. Crystal Growth and Design, 11, 32133221.
Sheldrick, G.M. (2015) New features added to the refinement program SHELXL since 2008 are described and explained. Acta Crystallographica, C71, 38.
Siidra, O.I., Vergasova, L.P., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2014) Unique thallium mineralization in the fumaroles of the Tolbachik volcano, Kamchatka Peninsula, Russia. II. Karpovite, Tl2VO(SO4)2(H2O). Mineralogical Magazine, 78, 16991709.
Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A., Lukina, E.A., Zaitsev, A.N., Turner, R., Filatov, S.K., Pekov, I.V., Karpov, G.A. and Yapaskurt, V.O. (2018) Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia. Mineralogy and Petrology, 112, 123134.
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Lukina, E.A., Avdontseva, E.Y., Vergasova, L.P., Vlasenko, N.S., Filatov, S.K., Turner, R. and Karpov, G.A. (2017) Copper oxosulphates from fumaroles of Tolbachik vulcano: puninite, Na2Cu3O(SO4)3 – a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. European Journal of Mineralogy, 29, 499510.
Stoilova, D., Marinova, D., Wildner, M. and Georgiev, M. (2009 a) Comparative study on energetic distortions of ${\rm SO}{_4^{2-}} $ ions matrix-isolated in compounds with kröhnkite-type chains, K2Me(CrO4)2·2H2O and Na2Me(SeO4)2·2H2O (Me = Mg, Co, Ni, Zn, Cd). Solid State Sciences, 11, 20442050.
Stoilova, D., Marinova, D. and Georgiev, M. (2009 b) Hydrogen bond strength in chromates with kröhnkite-type chains, K2Me(CrO4)2·2H2O (Me = Mg, Co, Ni, Zn, Cd). Vibrational Spectroscopy, 50, 245249.
Szynkiewicz, A., Borrok, D.M. and Vaniman, D.T. (2014) Efflorescence as a source of hydrated sulfate minerals in valley settings on Mars. Earth and Planetary Science Letters, 393, 1425.
Testasicca, L.P., Frost, R.L., Ruan, X., Lima, J., Belotti, F.M. and Scholz, R. (2016) The application of high-temperature X-ray diffraction and infrared emission spectroscopy to the thermal decomposition of kröhnkite. Journal of Thermal Analysis and Calorimetry, 126, 10891095.
Vaniman, D.T., Bish, D.L., Chipera, S.J., Fialips, C.I., Carey, J.W. and Feldman, W.G. (2004) Magnesium sulphate salts and the history of water on Mars. Nature, 431, 663665.
Vasavada, A. (2017) Our changing view of Mars. Physics Today, 70, 3441.
Vergasova, L.P. and Filatov, S.K. (2016) A study of volcanogenic exhalation mineralization. Journal of Volcanology and Seismology, 10, 7185.
Wang, A and Zhou, A. (2014) Experimental comparison of the pathways and rates of the dehydration of Al-, Fe-, Mg- and Ca-sulfates under Mars relevant conditions. Icarus, 234, 162173.
Wierzbicka-Wieczorek, M., Kolitsch, U. and Tillmanns, E. (2008) Flux syntheses and crystal structures of new compounds with decorated kröhnkite-like chains. Acta Chimica Slovenica, 55, 909917.
Wildner, M. and Stoilova, D. (2003) Crystal structures and crystal chemical relationships of kröhnkite- and collinsite-type compounds Na2Me2+(XO4)2·2H2O (X = S, Me = Mn, Cd; and X = Se, Me = Mn, Co, Ni, Zn, Cd) and K2Co(SeO4)2·2H2O. Zeitschrift für Kristallographie – Crystalline Materials, 218, 201209.
Yang, H., Jenkins, R.A., Downs, R.T., Evans, S.H. and Tait, K.T. (2011) Rruffite, Ca2Cu(AsO4)2·2H2O, a new member of the roselite group, from Tierra Amarilla, Chile. Canadian Mineralogist, 49, 877884.
Yoshiasa, A., Yagyu, G., Ito, T., Yamanaka, T. and Nagai, T. (2000) Crystal structure of the high pressure phase(II) in CuGeO3. Zeitschrift für Anorganische und Allgemeine Chemie, 626, 3641.


Type Description Title
Supplementary materials

Siidra et al. supplementary material
Supplementary material

 PDF (355 KB)
355 KB

Saranchinaite, Na2Cu(SO4)2, a new exhalative mineral from Tolbachik volcano, Kamchatka, Russia, and a product of the reversible dehydration of kröhnkite, Na2Cu(SO4)2(H2O)2

  • Oleg I. Siidra (a1) (a2), Evgeniya A. Lukina (a1), Evgeniy V. Nazarchuk (a1), Wulf Depmeier (a3), Rimma S. Bubnova (a1), Atali A. Agakhanov (a4), Evgeniya Yu. Avdontseva (a1), Stanislav K. Filatov (a1) and Vadim M. Kovrugin (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed