Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T08:06:04.568Z Has data issue: false hasContentIssue false

The relationship of the order of crystallization of basalt melts to their classification and to the definition of rock series

Published online by Cambridge University Press:  05 July 2018

E. P. Cameron
Affiliation:
Department of Geology, Queen Mary College, London
W. J. French
Affiliation:
Department of Geology, Queen Mary College, London

Summary

Basalt composition is defined as that chemical composition which when crystallized at one atmosphere under standard conditions will yield olivine, clinopyroxene, and plagioclase as the principal silicate phases. This gives six classes of basalt defined by their order of crystallization but only four of these are encountered in rocks: class 1, olivine→clinopyroxene→plagioclase; class 2, olivine→plagioclase→clinopyroxene; class 3, plagioclase→olivine→clinopyroxene; and class 4, plagioclase→linopyroxene→olivine. Classes 5 and 6 would have clinopyroxene as the first phase. The class can be determined from the rock composition from multivariate discriminant function equations but Si, Mg, Al, and Na provide a more simple diagnosis via dis-criminant diagrams. Rock series plotted on these diagrams show systematic trends that allow the series them-selves to be classified. Each class corresponds with a commonly recognized basalt type and all four classes relate to tectonic setting groups.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, (T. W.), 1958. Introduction to multivariate statistical analysis. Wiley, New York.Google Scholar
Brown, (G. M.) and Schairer, (J. F.), 1967. Rep. Dir. Geophys. Lab. Carnegie Instn. 66, 460–7.Google Scholar
Carmichael, (I. S.) 1964. J. Petrol. 5, 435–66.CrossRefGoogle Scholar
Carmichael, (I. S.) Turner, (F. J.), and Verhoogen, (J.) 1974. Igneous Petrology. McGraw-Hill, New York.Google Scholar
Chayes, (F.), 1965. Am. Mineral. 50, 1618–33.Google Scholar
Clarke, (D. B.), 1970. Contrib. Mineral. Petrol. 25, 203–24.CrossRefGoogle Scholar
Condliffe, (E.), 1972. N.E.R.C. Publ. Series D, 2, 42–5.Google Scholar
Cox, (K. G.) and Jamieson, (B. G.), 1974. J. Petrol. 15, 269–303.CrossRefGoogle Scholar
Dixon, (W. J.), 1973. Biomedical Computer Programs. University of California Press Ltd., London.Google Scholar
French, (W. J.), 1971. Contrib. Mineral. Petrol. 31, 154.8.CrossRefGoogle Scholar
Fudali, (R. F.), 1965. Geochim. Cosmochim. Ada, 29, 1063–75.CrossRefGoogle Scholar
Green, (T. H.) and Ringwood, (A. E.), 1968. Contrib. Mineral. Petrol. 18, 105–62.CrossRefGoogle Scholar
Hill, (R.) and Roeder, (P.), 1974. J. Geol. 82, 709–29.CrossRefGoogle Scholar
Kuno, (H.), 1966. Bull. Vokanologique, 29, 195–222.CrossRefGoogle Scholar
Lachenbruch, (P. A.), Lilienthal (C), and Revo, (L. T.), 1969. Proc. 37th Session Int. Stat. Inst. 2, 149–51.Google Scholar
Le Maitre, (R. W.), 1962. Bull. Geol. Soc. Am. 73, 1309–40.CrossRefGoogle Scholar
Le Maitre, (R. W.), 1976. Contrib. Mineral. Petrol. 58, 191–203.CrossRefGoogle Scholar
Miyashiro, (A.), 1975. Ann. Rev. Earth Planet. Sci. 3, 251–69.CrossRefGoogle Scholar
O'Hara, (M. J.), 1965. Scott. J. Geol. 1, 19–44.CrossRefGoogle Scholar
O'Hara, (M. J.), 1968. Earth Sci. Rev. 4, 69–133.CrossRefGoogle Scholar
Pearce, (J. A.), 1976. J. Petrol. 17, 15–43.CrossRefGoogle Scholar
Pearce, (J. A.) and Cann, (J. R.), 1971. Earth Planet. Sci. Lett. 12, 339–49.CrossRefGoogle Scholar
Ringwood, (A. E.), 1975. Composition of the earth's mantle. McGraw-Hill, New York.Google Scholar
Strong, (D. F.), 1972. J. Petrol. 13, 181–217.CrossRefGoogle Scholar
Thompson, (R. N.), Esson, (J.) and Dunham, (A. C), 1972. J. Petrol. 13, 219, 253.CrossRefGoogle Scholar
Thompson, (R. N.), Esson, (J.) and Flower, (M. F. J.), 1971. Earth Planet Sci. Lett. 12, 97–107.CrossRefGoogle Scholar
Thompson, (R. N.), Esson, (J.) and Tilley, (C. E.), 1969. Ibid. 5, 469–77.Google Scholar
Tilley, (C. E.) and Thompson, (R. N.), 1970. Ibid. 8, 79–92.Google Scholar
Tilley, (C. E.) and Lovenbury, (P. A.), 1972. Geol. J. 8, 59–64.CrossRefGoogle Scholar
Tilley, (C. E.) and Lovenbury, (P. A.) Wadsworth, (W. J.) and Upton, (B. G. J.), 1971. Mineral. Mag. 38, 344.52.CrossRefGoogle Scholar
Tilley, (C. E.) and Lovenbury, (P. A.) Yoder, (H. S.) and Schairer, (J. F.), 1964. Ann. Rep. Dir. Geophys. Lab. Carnegie Instn. 63, 92–6.Google Scholar
Tilley, (C. E.) and Lovenbury, (P. A.), 1965. Ibid. 64, 69–82.Google Scholar
Tilley, (C. E.) and Lovenbury, (P. A.), 1966. Ibid. 65, 260–9.Google Scholar
Tilley, (C. E.) and Lovenbury, (P. A.), 1967. Ibid. 66, 450–7.Google Scholar
Turner, (F. J.) and Verhoogen, (J.), 1960. Igneous and Metamorphic Petrology. McGraw-Hill, New York.Google Scholar
Wright, (T. L.) and Fiske, (R. S.), 1971. J. Petrol. 12, 1–65.CrossRefGoogle Scholar
Yoder, (H. S.) and Tilley, (C. E.), 1962. J. Petrol. 3, 342–529.CrossRefGoogle Scholar