Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T15:00:00.369Z Has data issue: false hasContentIssue false

REE -Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution

Published online by Cambridge University Press:  05 July 2018

Anatoly N. Zaitsev
Affiliation:
Department of Mineralogy, St Petersburg University, St Petersburg 199034, Russia
Frances Wall
Affiliation:
Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD
Michael J. Le Bas
Affiliation:
Department of Geology, University of Southampton, Southampton Oceanography Centre, Southampton, SO14 3ZH

Abstract

Carbonatites from the Khibina Alkaline Massif (360–380 Ma), Kola Peninsula, Russia, contain one of the most diverse assemblages of REE minerals described thus far from carbonatites and provide an excellent opportunity to track the evolution of late-stage carbonatites and their sub-solidus (secondary) changes. Twelve rare earth minerals have been analysed in detail and compared with literature analyses. These minerals include some common to carbonatites (e.g. Ca-rare-earth fluocarbonates and ancylite-(Ce)) plus burbankite and carbocernaite and some very rare Ba,REE fluocarbonates.

Overall the REE patterns change from light rare earth-enriched in the earliest carbonatites to heavy rare earth-enriched in the late carbonate-zeolite veins, an evolution which is thought to reflect the increasing ‘carbohydrothermal’ nature of the rock-forming fluid. Many of the carbonatites have been subject to sub-solidus metasomatic processes whose products include hexagonal prismatic pseudomorphs of ancylite-(Ce) or synchysite-(Ce), strontianite and baryte after burbankite and carbocernaite. The metasomatic processes cause little change in the rare earth patterns and it is thought that they took place soon after emplacement.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. (1986) Compositional variation of some rare earth minerals from the Fen complex (Telemark, SE Norway): implication for the mobility of rare earths in a carbonatite system. Mineral. Mag., 50, 503–9.CrossRefGoogle Scholar
Bulakh, A.G. and Izokh, E.P. (1966) New data on carbocernaite. Dokl. Acad. Sci. USSR., 175, 118–20.Google Scholar
Bulakh, A.G., Kondrateva, V.V. and Baranova, E.N. (1961) Carbocernaite, a new rare earth carbonate. Zap. Vses. Mineral. Obshch., 90 (1), 42–9 (in Russian).Google Scholar
Chao, G.Y., Mainwaring, P.R. and Baker, J. (1978) Donnayite, NaCaSr3Y(CO3)6 3H2O, a new mineral from Mont St-Hilaire, Quebec. Canad. Mineral., 16, 335–40Google Scholar
Chen, T.T. and Chao, G.Y. (1975) Cordylite from Mont St. Hilaire, Quebec. Canad. Mineral., 13, 93–4Google Scholar
Clarke, L.B., Le Bas, M.J. and Spiro, B. (1992) Rare earth, trace element and stable isotope fractionation of carbonatites at Kruidfontein, Transvaal S. Africa. International Kimberlite Conference, 5 Araxa 1991. Proceedings. CPRM Special publication. CPRM, Brasilia, 236–51.Google Scholar
Dal Negro, A., Rossi, G. and Tazzoli, V. (1975) The crystal structure of ancylite, (RE)x(Ca,Sr)2–x(CO3)2(OH)x·(2–x)H2O. Amer. Mineral., 60, 280–4.Google Scholar
Donnay, G. and Donnay, J.D.H. (1953) The crystallography of bastnäsite, parisite, röntgenite and synchysite. Amer. Mineral., 38, 932–63.Google Scholar
Effenberger, H., Kluger, F. Paulus, H. and Wolfel, E.R. (1985) Crystal structure refinement of burbankite. Neues Jahrb. Mineral., Mh., 161–70.Google Scholar
Fleischer, M. (1965) Some aspects of the geochemistry of yttrium and the lanthanides. Geochim. Cosmochim. Acta, 29, 755–72.CrossRefGoogle Scholar
Fleischer, M. (1978) Relative proportions of the lanthanides in minerals of the bastnaesite group. Canad. Mineral., 16, 361–3.Google Scholar
Fleischer, M. and Altschuler, Z.S. (1969) The relationship of rare-earth composition of minerals to geological environment. Geochim. Cosmochim. Acta, 33, 725–32.CrossRefGoogle Scholar
Flink, G. (1901) On the minerals from Narsarsuk on the Tunugdliarfic in Southern Greenland. Meddel. åm Gronland, 24, 42–9.Google Scholar
Fu, P. and Su, X. (1988) Baiyuneboite-(Ce) — a new mineral. Chinese J. Geochem., 7, 348–56.Google Scholar
Harris, D.C. (1972) Carbocernaite, a Canadian occurrence Canad. Mineral., 11, 812–18.Google Scholar
Hatzl, T. (1992) Die Genese Karbonatite- und Alkalivulkanit-assoziierten Fluorit-Baryt-Bastnäsit- Vererzung bei Kizilçaören (Türkei). Münchner Geol. Hefte, 8, 271 pp.Google Scholar
Hogarth, D.D., Hartree, R., Loop, S. and Solberg, T.N. (1985) Rare-earth element minerals in four carbonatites near Gatineau, Quebec. Amer. Mineral., 70, 1135–42.Google Scholar
Kapustin, Yu.L. (1973) First find of huanghoite in the USSR. Dokl. Acad. Sci. USSR., 202, 116–9.Google Scholar
Kapustin, Yu.L. (1980) Mineralogy of Carbonatites. Amerind Publishing, New Dehli, 259 pp.Google Scholar
Khomyakov, A.P. (1995) Mineralogy of hyperagpaitic alkaline rocks. Clarendon Press, Oxford, 220 pp.Google Scholar
Knudsen, C. (1991) Petrology, geochemistry and economic geology of the Qaquarssuk carbonatite complex. southern West Greenland.Monograph Ser ies on Mineral Deposits, 29. Gebrüder Borntraeger, Berlin-Stuttgart, 110 pp.Google Scholar
Kogarko, L.N., Kononova, V.A., Orlova, M.P. and Woolley, A.R. (1995) Alkaline Rock s and Carbonatites of the World. Part 2: former USSR. Chapman and Hall, London, 226 pp.Google Scholar
Kramm, U. and Kogarko, L.N. (1994) Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline Province, Russia. Lithos, 32, 225–42.CrossRefGoogle Scholar
Kramm, U., Kogarko, L.N., Kononova, V.A. and Vartiainen, H. (1993) The Kola Alkaline Province of the CIS and Finland: precise Rb-Sr ages define 380–360 Ma age range for all magmatism. Lithos, 30, 3344.CrossRefGoogle Scholar
Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, E.I., Ilinsky, G.A., Sergeev, A.S. and Abakumova, N.B. (1965) The Caledonian complexes of ultrabasic-alkaline and carbonatite rocks on Kola peninsula and in Northern Karelia (geology, petrology, mineralogy and geochemistry).Nedra, Moscow, 772 pp. (in Russian).Google Scholar
Milton, C., Ingram, B., Clark, J.R. and Dwornik, E.J. (1965) Mckelveyite, a new hydrous sodium barium rare-earth uranium carbonate mineral from Green River Formation, Wyoming. Amer. Mineral., 50, 593612.Google Scholar
Minakov, F.V. and Dudkin, O.B. (1974) Possible presence of carbonatite in the Khibiny alkalic massif. Dokl. Akad. Nauk SSSR (Earth Sci. Sect.), 215, 10912.Google Scholar
Minakov, F.V., Dudkin, O.B. and Kamenev, E.A. (1981) The Khibina carbonatite complex. Dokl. Akad. Nauk SSSR (Earth Sci. Sect. ), 259, 5860.Google Scholar
Nelson, D.R., Chivas, A.R., Chappel, B.W. and McCulloch, M.T. (1988) Geochemical and isotopic systematics in carbonatites and implication for the evolution of ocean-island sources. Geochim. Cosmochim. Acta, 52, 117.CrossRefGoogle Scholar
Ngwenya, B.T. (1994) Hydrothermal rare earth mineralization in carbonatites of the Tundulu complex, Malawi: processes at the fluid/rock interface. Geochim. Cosmochim. Acta, 58, 2061–72.CrossRefGoogle Scholar
Ni, Y., Hughes, J.M. and Mariano, A.N. (1993) The atomic arrangement of bastna¨site-(Ce), Ce(CO3)F, and structural elements of synchysite-(Ce), röntgenite-(Ce) and parisite-(Ce). Amer. Mineral., 78, 415–8.Google Scholar
Olsen, J.C., Shawe, D.R., Pray, L.C. and Sharp, W.N. (1954) Rare-earth mineral deposit of the Mountain Pass district, San Bernardino County, California. U.S. Geol. Surv. Prof. Pap., 261, 75 pp.Google Scholar
Pecora, W.T. and Kerr, J.H. (1953) Burbankite and calkinsite, two new carbonate minerals from Montana. Amer. Mineral., 38, 1169–83.Google Scholar
Platt, R.G. and Woolley, A.R. (1990) The carbonatites and fenites of Chipman Lake, Ontario. Canad. Mineral., 28, 241–50.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides. Acta Crystallogr., A32, 751–67.CrossRefGoogle Scholar
Somina, M.Ya. (1975) Dolomite and ankerite carbonatites from the East Siberia.Nedra, Moscow, 91 pp. (in Russian).Google Scholar
Voloshin, A.V., Subbotin, V.V., Yakovenchuk, V.N., Pakhomovsky, Y.A., Menshikov, Yu.P. and Zaitsev, A.N. (1990) Mckelveyite from carbonatites and hydrothermalites of alkaline rocks, Kola peninsula (the first findings in the USSR). Zap. Vses. Mineral. Obshch., 119 (6), 7686 (in Russian).Google Scholar
Voloshin, A.V., Subbotin, V.V., Yakovenchuk, V.N., Pakhomovsky, Y.A., Menshikov, Yu.P., Nadezhdina, T.N. and Pustcharovsky, D.Yu. (1992) New data on the ewaldite. Vses. Mineral. Obshch., 121 (1), 5667 (in Russian).Google Scholar
Wakita, H., Rey, P. and Schmitt, R.A. (1971) Abundances of the 14 rare-earth elements and 12 other trace-elements in Apollo 12 samples: five igneous and one breccia rocks and four soils. Proc. 2nd Lunar Sci. Conf., 1319–29.Google Scholar
Wall, F. and Mariano, A.N. (1996) Rare earth minerals in carbonatites: a discussion centred on the Kangankunde Carbonatite, Malawi. In: Rare Earth Minerals: Chemistry, Origin and Ore Deposits. (Jones, A.P., Wall, F. and Williams, C.T., eds.). Mineralogical Society Series, 7. Chapman and Hall, London, 193225.Google Scholar
Wall, F., Le Bas, M.J. and Srivastava, R.K. (1993) Calcite and carbocernaite exsolution and cotectic textures in a Sr, REE-rich carbonatite dyke from Rajasthan, India. Mineral. Mag., 57, 495513.CrossRefGoogle Scholar
Williams, C.T. (1996) Analysis of rare earth minerals. In: Rare Earth Minerals: Chemistry, Origin and Ore Deposits. (Jones, A.P. Wall, F. and Williams, C.T., eds.), Mineralogical Society Series, 7. Chapman and Hall, London, 327–48.Google Scholar
Wood, D.A., Joron, J.L., Treuil, M., Norry, M. and Tarney, J. (1979) Elemental and Sr isotope variations in basic lavas from Iceland and surrounding ocean floor. Contrib. Mineral. Petrol., 70, 319–39.CrossRefGoogle Scholar
Woolley, A.R. and Kempe, D.R.C. (1989) Carbonatites: nomenclature, average chemical composition, and element distribution. In: Carbonatites: Genesis and Evolution (Bell, K., ed.). Unwin Hyman, London, 114.Google Scholar
Zaitsev, A.N. (1996) Rhombohedral carbonates from carbonatites of the Khibina massif, Kola peninsula, Russia. Canad. Mineral., 34, 453–68.Google Scholar
Zaitsev, A.N., Menshikov, Yu.P. and Yakovenchuk, V.N. (1992) Barium zeolites from Khibina alkaline massif. Zap. Vses. Mineral. Obshch., 121 (2), 5461 (in Russian).Google Scholar
Zaitsev, A.N., Yakovenchuk, V.N., Chao, G.Y., Gault, R.A., Subbotin, V.V., Pakhomosky, Ya.A. and Bogdanova, A.N. (1996) Kukharenkoite-(Ce), Ba2Ce(CO3)3F, a new mineral from Kola peninsula, Russia, and Quebec, Canada. Eur. J. Mineral., 8, 1327–36.CrossRefGoogle Scholar
Zdorik, T.B. (1966) Burbankite and its alteration. In New Data on Minerals from USSR, 17, Nauka, Moscow, 6075 (in Russian).Google Scholar
Zhabin, A.G., Shumyatskaya, N.G. and Samsonova, N.S. (1971) Burbankite from the Arbarastakh carbonatite complex. In: New Data on Minerals from USSR, 20, Nauka, Moscow, 202–4 (in Russian).Google Scholar
Zhang, P. and Tao, K. (1986) Bayan Obo Mineralogy. Science Publisher, Beijing, 208 pp. (in Chinese).Google Scholar