Skip to main content Accessibility help

REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley

  • R. MacDonald (a1) (a2), B. Baginíski (a1), H. E. Belkin (a3), P. Dzieržanowski (a1) and L. Jeżak (a1)...


Electron microprobe analyses are presented for fluorapatite phenocrysts from a benmoreite-peralkaline rhyolite volcanic suite from the Kenya Rift Valley. The rocks have previously been well characterized petrographically and their crystallization conditions are reasonably well known. The REE contents in the M site increase towards the rhyolites, with a maximum britholite component of ~35 mol.%. Chondrite-normalized REE patterns are rather flat between La and Sm and then decrease towards Yb. Sodium and Fe occupy up to 1% and 4%, respectively, of the M site. The major coupled substitution is REE3+ + Si4+ ↔ Ca2+ + P5+. The substitution REE3+ + Na+ ↔ 2Ca2+has been of minor importance. The relatively large Fe contents were perhaps facilitated by the low fO2 conditions of crystallization. Zoning is ubiquitous and resulted from both fractional crystallization and magma mixing. Apatites in some rhyolites are relatively Y-depleted, perhaps reflecting crystallization from melts which had precipitated zircon. Mineral/glass (melt) ratios for two rhyolites are unusually high, with maxima at Sm (762, 1123).


Corresponding author


Hide All
Andersen, D.J., Lindsley, D.H. and Davidson, P.M. (1993) QUILF: a Pascal program to assess equilibria among Fe-Mg-Ti oxides, pyroxenes, olivine and quartz. Computers & Geosciences, 19, 13331350.
Armstrong, J.T. (1995) CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Analysis, 4, 177200.
Boyce, J.W. and Hervig, R.L. (2009) Apatite as a monitor of late-stage magmatic processes at Volcan Irazu, Costa Rica. Contributions to Mineralogy and Petrology, 157, 135145.
Biihn, B., Wall, F. and Le Bas, M.J. (2001) Rare-earth element systematics of carbonatitic fluorapatites, and their significance for carbonate magma evolution. Contributions to Mineralogy and Petrology, 141, 572591.
Cherniak, DJ. (2000) Rare earth element diffusion in apatite. Geochimica et Cosmochimica Ada, 64, 38713885.
Clarke, M.C., Woodhall, D.G., Allen, D. and Darling, G. (1990) Geological, volcanological and hydrogeological controls on the occurrence of geothermal activity in the area surrounding Lake Naivasha, Kenya. Ministry of Energy Report, Nairobi, Kenya, 138 pp.
Comodi, P., Liu, Y., Stoppa, F. and Woolley, A.R. (1999) A multi-method analysis of Si-, S- and REE-rich apatite from a new find of kalsilite-bearing leucitite (Abruzzi, Italy). Mineralogical Magazine, 63, 661672.
Exley, R.A. (1980) Microprobe studies of REE-rich accessory minerals: implications for Skye granite petrogenesis and REE mobility in hydrothermal systems. Earth and Planetary Science Letters, 48, 97110.
Fransolet, A.-M. and Schreyer, W. (1981) Unusual, iron-bearing apatite from a garnetiferous pegmatoid, Northampton Block, Western Australia. Neues Jahrbuch fur Mineralogie Monatshefte, 317327.
Heumann, A. and Davies, G.R. (2002) U-Th disequilibrium and Rb-Sr age constraints on the magmatic evolution of peralkaline rhyolites from Kenya. Journal of Petrology, 43, 557577.
Hughes, J.M., Cameron, M. and Mariano, A.N. (1991) Rare-earth-element ordering and structural variations in natural rare-earth-bearing apatites. American Mineralogist, 76, 11651173.
Macdonald, R. and Bailey, D.K (1973) The chemistry of the peralkaline oversaturated obsidians. U.S. Geological Survey Professional Paper, 440-N-l, N1N37.
Macdonald, R., Davies, G.R., Bliss, CM., Leat, P.T., Bailey, D.K. and Smith, R.L. (1987) Geochemistry of high-silica rhyolites, Naivasha, Kenya rift valley. Journal of Petrology, 28, 9791008.
Macdonald, R., Belkin, H.E., Fitton, J.G., Rogers, N.W., Nejbert, K., Tindle, A.G. and Marshall, A.S. (2008) The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile-melt interactions in the genesis of a young basalt—peralkaline rhyolite suite, the Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 49, 15151547.
Mahood, G.A. and Hildreth, W. (1983) Large partition coefficients for trace elements in high-silica rhyo lites. Geochimica et Cosmochimica Ada, 47, 11 —30.
Mahood, G.A. and Stimac, J.A. (1990) Trace-element partitioning in pantellerites and trachytes. Geochimica et Cosmochimica Ada, 54, 22572276.
Mandarino, J.A. (1999) Fleischer's Glossary of Mineral Species. The Mineralogical Record Inc. Tucson, Arizona, USA, 225 pp.
Marshall, A.S., Macdonald, R., Rogers, N.W., Fitton, J.G., Tindle, A.G., Nejbert, K. and Hinton, R.W. (2009) Extreme fractionation of peralkaline silicic magmas :the Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 50, 323359.
Oberti, R., Ottolini, L., Delia Ventura, G. and Parodi, G.C. (2001) On the symmetry and crystal chemistry of britholite: New structural and microanalytical data. American Mineralogist, 86, 10661075.
Pan, Y. and Fleet, M.E. (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Pp. 13–49 in: Phosphates: Geochemical, Geobiological, and Materials Importance (Kohn, M.J., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry 48, Mineralogical Society of America, Chantilly, Virginia, USA.
Piccoli, P.M. and Candela, P.A. (2002) Apatite in igneous systems. Pp. 255–292 in: Phosphates: Geochemical, Geobiological, and Materials Importance (Kohn, MJ., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, 48, Mineralogical Society of America, Chantilly, Virginia, USA.
Roeder, P.L., McArthur, D., Ma, X.P. and Palmer, G.R. (1987) Cathodoluminescence and mieroprobe study of rare-earth elements in apatite. American Mineralogist, 72, 801811.
Ronsbo, J.G. (1989) Coupled substitutions involving REEs and Na and Si in apatites from alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. American Mineralogist, 74, 896901.
Ronsbo, J.G. (2008) Apatite in the Ilimaussaq alkaline complex: Occurrence, zonation and compositional variation. Lithos, 106, 7182.
Scaillet, B. and Macdonald, R. (2001) Phase relations of peralkaline silicic magmas and petrogenetic implications. Journal of Petrology, 42, 825845.
Scaillet, B. and Macdonald, R. (2003) Experimental constraints on the relationships between peralkaline rhyolites of the Kenya Rift Valley. Journal of Petrology, 44, 18671894.
Sha, L.-K. and Chappell, B.W. (1999) Apatite chemical composition, determined by electron mieroprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Ada, 63, 38613881.
Sun, S.-S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Pp. 313–345 in: Magmatism in the Ocean Basins (Saunders, A.D. and Norry, M.J., editors). Geological Society, London, Special Publication, 42.
Tepper, J.H. and Kuehner, S.M. (1999) Complex zoning in apatite from the Idaho batholith: A record of magma mixing and intracrystalline trace element diffusion. American Mineralogist, 84, 581595.
Wilding, M.C., Macdonald, R., Davies, J.E. and Fallick, A.E. (1993) Volatile characteristics of peralkaline rhyolites from Kenya: an ion mieroprobe, infrared spectroscopic and hydrogen isotope study. Contributions to Mineralogy and Petrology, 144, 264275.


Type Description Title
Supplementary materials

Macdonald et al. supplementary material
Supplementary data table 1

 Excel (135 KB)
135 KB
Supplementary materials

Macdonald et al. supplementary material
Supplementary data table 2

 Word (180 bytes)
180 bytes
Supplementary materials

Macdonald et al. supplementary material
Supplementary data table 3

 Excel (50 KB)
50 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed