Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T00:07:35.362Z Has data issue: false hasContentIssue false

Quantitative Raman calibration of sulfate-bearing polymineralic mixtures: a S quantification in sedimentary rocks on Mars

Published online by Cambridge University Press:  14 September 2018

Chloé Larre*
Affiliation:
Université de Nantes, Faculté des Sciences et Techniques, Laboratoire de Planétologie et Géodynamique (LPG), UMR CNRS 6112, 2 rue de la Houssinière, 44322 Nantes, France
Yann Morizet
Affiliation:
Université de Nantes, Faculté des Sciences et Techniques, Laboratoire de Planétologie et Géodynamique (LPG), UMR CNRS 6112, 2 rue de la Houssinière, 44322 Nantes, France
Catherine Guillot-Deudon
Affiliation:
Université de Nantes, Faculté des Sciences et Techniques, Laboratoire de Planétologie et Géodynamique (LPG), UMR CNRS 6112, 2 rue de la Houssinière, 44322 Nantes, France IMN, Institut des Matériaux Jean Rouxel de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, 44322 Nantes, France
Fabien Baron
Affiliation:
Université de Nantes, Faculté des Sciences et Techniques, Laboratoire de Planétologie et Géodynamique (LPG), UMR CNRS 6112, 2 rue de la Houssinière, 44322 Nantes, France
Nicolas Mangold
Affiliation:
Université de Nantes, Faculté des Sciences et Techniques, Laboratoire de Planétologie et Géodynamique (LPG), UMR CNRS 6112, 2 rue de la Houssinière, 44322 Nantes, France
*
*Author for correspondence: Chloé Larre, Email: chloe.larre@univ-nantes.fr

Abstract

The NASA 2020 Mars mission is a Curiosity-type rover whose objective is to improve the knowledge of the geological and climatic evolution of Mars and to collect rock samples for return to Earth. The new rover has a payload of seven instruments including the SuperCam instrument which consists of four tools including a Raman spectrometer. This Raman device will be non-destructive and will analyse the surface remotely in order to determine the mineralogy of rocks and, by extent, to detect and quantify major elements such as sulfur. Sulfur has been detected as sulfate (Ca,Mg,Fe-sulfates) in sedimentary rocks. This element is difficult to quantify using the laser ablation tool of the ChemCam instrument on-board the Curiosity rover.

We propose a Raman calibration to constrain the sulfur abundance in polymineralic mixtures. We acquired Raman signatures on binary and ternary mechanical mixtures containing Ca and Mg sulfates, mixed with natural silicate minerals supposed to be relevant to basaltic-sedimentary rocks at the surface of Mars: olivine, clinopyroxene, orthopyroxene and plagioclase. Using the Voigt function to process the Raman spectra from samples extracted from our mixtures allows us to calculate the initial proportions of our preparations of Ca and Mg sulfates. From these simulations, calibration equations have been provided allowing us to determine sulfate proportions (CaSO4 and MgSO4) in a mixture with basaltic minerals. With the presented calibration, S can be quantified at a lower limit of 0.7 wt.% in Martian soil.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Andrew Christy

References

Agee, C.B. and Draper, D.S. (2004) Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle. Earth Planet Science Letters, 224, 415429.Google Scholar
Anderson, D.E., Ehlmann, B.L., Forni, O., Clegg, S.M., Cousin, A., Thomas, N.H. et al. (2017) Characterization of LIBS estimation lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data. Journal of Geophysical Research: Planets, 122, 744770.Google Scholar
Arvidson, R.E., Poulet, F., Bibring, J.-P., Wolff, M., Gendrin, A., Morris, R.V., Freeman, J.J., Langevin, Y., Mangold, N. and Bellucci, G. (2005) Spectral reflectance and morphologic correlations in Eastern Terra Meridiani, Mars. Science, 307, 15911594.Google Scholar
Bandfield, J.L., Hamilton, V.E. and Christensen, P.R. (2000) A global view of Martian surface composition from MGS-TES. Science, 287, 16261630.Google Scholar
Baratoux, D., Toplis, M.J., Monnereau, M. and Sautter, V. (2013) The petrological expression of early Mars volcanism. Journal of Geophysical Research: Planets, 118, 5964.Google Scholar
Bish, D.L., Blake, D.F., Vaniman, D.T., Chipera, S.J., Morris, R.V., Ming, D.W., Treiman, A.H., et al. (2013) X-ray diffraction results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 341, Issue 6153, 1238932.Google Scholar
Bishop, J.L., Lane, M.D., Dyar, M.D., King, S.J., Brown, A.J. and Swayze, G. (2014) Spectral properties of Ca-sulfates: Gypsum, Bassanite and Anhydrite. American Mineralogist, 99, 21052115.Google Scholar
Blake, D.F., Morris, R.V., Kocurek, G., Morrison, S.M., Downs, R.T., Bish, D., Ming, D.W., et al. (2013) Curiosity at Gale crater, Mars: Characterization and analysis of the Rocknest sand shadow. Science, 341, Issue 6153, 1239505.Google Scholar
Brawer, S.A. and White, W.B. (1975) Raman spectroscopic investigation of the structure of silicate glasses. I. The binary alkali silicates. The Journal of Chemical Physics, 63, 2421.Google Scholar
Bremard, C., Dhamelincourt, P., Laureyns, J. and Turrell, G. (1986) Polarization measurements in micro-Raman and microfluorescence spectrometries. Journal of Molecular Structure, 142, 1316.Google Scholar
Buzgar, N., Buzatu, A. and Sanislav, I.V. (2009) The Raman study on certain sulfates. Analele Ştiinţifice ale Universităţii „AL. I. Cuza” Iaşi, seria Geologie, 55(1), 523.Google Scholar
Carter, J., Poulet, F., Bibring, J.-P., Mangold, N. and Murchie, S. (2013) Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. Journal of Geophysical Research: Planets, 118, 128.Google Scholar
Chopelas, A. (1991) Single crystal Raman spectra of forsterite, fayalite, and monticellite. American Mineralogist, 76, 11011109.Google Scholar
Clegg, S.M., Wiens, R.C., Dyar, M.D., Vaniman, D.T., Thompson, J.R., Sklute, E.C., et al. (2007) Sulfur geochemical analysis with remote laser-induced breakdown spectroscopy on the 2009 Mars science laboratory rover. Lunar Planetary Science Conference XXXVIII, abstract #1960. [Lunar and Planetary Institute abstracts available at https://www.lpi.usra.edu/publications/absearch/]Google Scholar
Cousin, A., Sautter, V., Payré, V., Forni, O., Mangold, N., Gasnault, O., Le Deit, L., Johnson, J., Maurice, S., Salvatore, M., Wiens, R.C., Gasda, P. and Rapin, W. (2017) Classification of igneous rocks analysed by ChemCam at Gale Crater, Mars. Icarus, 288, 265283.Google Scholar
Culka, A., Košek, F., Drahota, P., Jehlička, J. (2014) Use of miniaturized Raman spectrometer for detection of sulfates of different hydration states – Significance for Mars studies. Icarus, 243, 440453.Google Scholar
Dehouck, E., McLennan, S.M., Meslin, P.-Y. and Cousin, A. (2014) Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars. Journal of Geophysical Research: Planets, 119, 26402657.Google Scholar
Delhaye, M. and Dhamelincourt, P. (1975) Raman microprobe and microscope with laser excitation. Journal of Raman spectroscopy, 3, 3343.Google Scholar
Dubessy, J., Caumon, M.-C., Rull, F. and Sharma, S. (2012) Instrumentation in Raman spectroscopy: elementary theory and practice. Pp. 83172 in: Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage (Dubessy, J., Caumon, M.-C. and Rull, F., editors). EMU Notes in Mineralogy, 12.Google Scholar
Ehlmann, B.L., Berger, G., Mangold, N., Michalski, J.R., Catling, D.C., Ruff, S.W., Chassefière, E., Niles, P.B., Chevrier, V. and Poulet, F. (2013) Geochemical consequences of widespread clay mineral formation in Mars' ancient crust. Space Science Reviews, 174, 329364.Google Scholar
Forni, O., Gaft, M., Toplis, M.J., Clegg, S.M., Maurice, S., Wiens, R.C., et al. (2015) First detection of fluorine on Mars: Implications for Gale Crater's geochemistry. Geophysical Research Letters, 42, 10201028.Google Scholar
Fouchet, T., Wiens, R., Maurice, S., Johnson, J.R., Clegg, S., et al. (2016) The SuperCam Remote Sensing Suite for MARS 2020: Nested and Co-Aligned LIBS, Raman, and VISIR Spectroscopies, and color micro-imaging. Division for Planetary Sciences and the European Planetary Science Congress Oct 2016, Pasadena, United States. American Astronomical Society, 48, pp.123.09, 2016.Google Scholar
Freeman, J.J., Wang, A., Kuebler, K.E., Jolliff, D.L. and Haskin, L.A. (2008) Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. The Canadian Mineralogist, 46, 14771500.Google Scholar
Gendrin, A., Mangold, N., Bibring, J.P., Langevin, Y., Gondet, B., Poulet, F., Bonello, G., Quantin, C., Mustard, J., Arvidson, R. and LeMouélic, S. (2005) Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science, 307, 15871591.Google Scholar
Hoehse, M., Mory, D., Florek, S., Weritz, F., Gornushkin, I. and Panne, U. (2009) A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 12191227.Google Scholar
Huang, E., Chen, C.H., Huang, T., Lin, E.H. and XU, J.-A. (2000) Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes. American Mineralogist, 85, 473479.Google Scholar
Jehlicka, J., Vitek, P., Edwards, H.G.M, Heagraves, M. and Capoun, T. (2009) Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. Spectrochimica Acta Part A, 73, 410419.Google Scholar
King, P.L. and McLennan, S.M. (2010) Sulfur on Mars. Elements, 6, 107112.Google Scholar
Knittle, E., Phillips, W. and Williams, Q. (2001) An infrared and Raman spectroscopic study of gypsum at high pressures. Physics Chemistry Mineral, 28, 630640.Google Scholar
Kontoyannis, C.G., Orkoula, M.G. and Koutsoukos, P.G. (1997) Quantitative analysis of sulfated calcium carbonates using Raman spectroscopy and x-ray power diffraction. The Analyst, 122, 3338.Google Scholar
Kolesov, B.A. and Geiger, C.A. (2004) A Raman spectroscopic study of Fe-Mg olivines. Physics and Chemistry Minerals, 31, 142154.Google Scholar
Kolesov, B.A. and Tanskaya, J.V. (1996) Raman spectra and cation distribution in the lattice of olivines. Materials Research Bulletin, 31, 10351044.Google Scholar
Kristova, P., Hopkinson, L., Rutt, K., Hunter, H. and Cressey, G. (2013) Quantitative analyses of powdered multi-minerallic carbonate aggregates using a portable Raman spectrometer. American Mineralogist, 98, 401409.Google Scholar
Kuebler, K.E., Jolliff, B.L., Wang, A. and Haskin, L.A. (2006) Extracting olivine (Fo-Fa) compositions from Raman spectral peak positions. Geochimica et Cosmichimica Acta, 70, 62016222.Google Scholar
Lodders, K. (1998) A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions. Meteoritics & Planetary Science, 33, 183190.Google Scholar
Le Losq, C., Neuville, D.R, Moretti, R. and Roux, J. (2012) Determination of water content in silicate glasses using Raman spectrometry: Implications for the study of explosive volcanism. American Mineralogist, 97, 779790.Google Scholar
Mangold, N., Baratoux, D., Witasse, O., Encrenaz, T. and Sotin, C. (2016) Mars: a small terrestrial planet. Astronomy and Astrophysics Review, 24, 15.Google Scholar
Mangold, N., Schmidt, M.E., Fisk, M.R., Forni, O., McLennan, S.M., Ming, D.W., Sautter, V., Sumner, D., Williams, A.J., Clegg, S.M., Cousin, A., Gasnault, O., Gellert, R., Grotzinger, J.P. and Wiens, R.C. (2017) Classification scheme for sedimentary and igneous rocks in Gale crater, Mars. Icarus, 284, 117.Google Scholar
Maurice, S., Wiens, R.C., Saccoccio, M., Barraclough, B., Gasnault, O. and 65 more authors (2012) The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science objectives and Mast Unit Description. Space Science Reviews, 170, 167227.Google Scholar
Maurice, S., Clegg, S.M., Wiens, R.C., Gasnault, O., Rapin, W., Forni, O., Cousin, A., et al. (2016) ChemCam activities and discoveries during the nominal mission of Mars Science Laboratory in Gale crater, Mars. Journal of Analytical Atomic Spectrometry, 31, 863889.Google Scholar
McKeown, D.A., Bell, M.I. and Caracas, R. (2010) Theoretical determination of the Raman spectra of single-crystal forsterite (Mg2SiO4). American Mineralogist, 95, 980986.Google Scholar
McLennan, S.M., Bell, J., Calvin, W.M., Christensen, P., Clark, B.C., de Souza, P.A., Farmer, J., et al. (2005) Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 95121.Google Scholar
McMillan, P. (1984) Structural studies of silicate glasses and melts: applications and limitations of Raman spectroscopy. American Mineralogist, 69, 622644.Google Scholar
McSween, H.Y., Taylor, G.J. and Wyatt, M.B. (2009) Elemental composition of the Martian crust. Science, 324, 736739.Google Scholar
Mercier, M., Di Muro, A., Giordano, D., Métrich, N., Lesne, P., Pichavant, M., Scaillet, B., Clocchiatti, R. and Montagnac, G. (2009) Influence of glass polymerization and oxidation on micro-Raman water analysis in alumino-silicate glasses. Geochimica et Cosmochimica Acta, 73, 197217.Google Scholar
Meslin, P.-Y., Gasnault, O., Forni, O., Schröder, S., Cousin, A., 55 more authors and the MSL Science Team (2013) Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars. Science, 341.Google Scholar
Morizet, Y., Brooker, R.A., Iacono-Marziano, G. and Kjarsgaard, B.A. (2013 a) Quantification of dissolved CO2 in silicate glasses using micro-Raman spectroscopy. American Mineralogist, 98, 17881802.Google Scholar
Morizet, Y., Paris, M., Di Carlo, I. and Scaillet, B. (2013 b) Effect of Sulphur on the structure of silicate melts under oxidizing conditions. Chemical Geology, 358, 131147.Google Scholar
Morizet, Y., Gennaro, E., Jego, S., Zajacz, Z., Iacono-Marziano, G., Pichavant, M., Di Carlo, I., Ferraina, C. and Lesne, P. (2017) A Raman calibration for the quantification of SO42− groups dissolved in silicate glasses: Application to natural melt inclusions. American Mineralogist, 102, 20652076.Google Scholar
Morrison, S.M. (2018) Crystal chemistry of Martian minerals from Bradbury Landing through Naukluft Plateau, Gale Crater, Mars. American Mineralogist, 103, 857871.Google Scholar
Mustard, J.F., Poulet, F., Bibring, J.P., Langevin, Y., Gondet, B., Mangold, N., Bellucci, G. and Altieri, F. (2005) Olivine and pyroxene diversity in the crust of Mars. Science, 307, 15941597.Google Scholar
Mysen, B.O. and Virgo, D. (1980 a) Solubility mechanisms of carbon dioxide in silicate melts: a Raman spectroscopic study. American Mineralogist, 65, 885899.Google Scholar
Mysen, B.O. and Virgo, D. (1980 b) The solubility behavior of CO2 in melts on the join NaAlSi3O8–CaAl2SiO8–CO2 at high pressures and temperatures: A Raman spectroscopic study. American Mineralogist, 65, 11661175.Google Scholar
Nachon, M. (2016) Chimie de la surface de Mars dans le cratère Gale par l'analyse de données élémentaires de ChemCam sur Curiosity couplée à des simulations en laboratoire. PhD thesis, Université de Nantes, France.Google Scholar
Nachon, M., Mangold, N., Forni, O., Kah, L.C., Cousin, A., Wiens, R.C., Anderson, R., et al. (2017) Chemistry of diagnetic features analyzed by ChemCam at Pahrump Hill, Gale crater, Mars. Icarus, 281, 131136.Google Scholar
Noguchi, N., Shinoda, K. and Masuda, K. (2009) Quantitative analysis of binary mineral mixtures using Raman microspectroscopy: Calibration curves for silica and calcium carbonate minerals and application to an opaline silica nodule of volcanic origin. Journal of Mineralogical and Petrological Sciences, 104, 253262.Google Scholar
Ody, A. (2012) Dépouillement et interprétation des données spatiales d'imagerie hyperspectrale de Mars (OMEGA/MEx) Evolution volcanique de la surface de Mars. PhD thesis. Université Paris Sud - Paris XI.Google Scholar
Ollila, A.M., Wiens, R.C., Perez, R., Nelson, A., Bodine, M., Maurice, S., Sharma, S., et al. (2017) Preliminary evaluation of the Mars 2020 Rover's SuperCam Development Unit: co-aligned chemical and mineralogical analyses. Lunar Planetary Science Conference XLVIII, abstract #2339. [Lunar and Planetary Institute abstracts available at https://www.lpi.usra.edu/publications/absearch/]Google Scholar
Panczer, G., De Ligny, D., Mendoza, C., Gaft, M., Seydoux-Guillaume, A.-M. and Wang, X. (2012) Raman and fluorescence. Pp. 122 in: Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage (Dubessy, J., Caumon, M.-C. and Rull, F., editors). EMU Notes in Mineralogy, 12.Google Scholar
Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B., Gomez, C., et al. (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature, 438, 623627.Google Scholar
Prencipe, M., Mantovani, L., Tribaudino, M., Bersani, D. and Lottici, P.P. (2011) The Raman spectrum of diopside: a comparison between ab initio calculated and experimentally measured frequencies. European Journal of Mineralogy, 24, 457464.Google Scholar
Reynard, B., Montagnac, G. and Cardon, H. (2012) Raman spectroscopy at high pressure and temperature for the study of the Earth's mantle and planetary minerals. Pp. 365388 in: Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage (Dubessy, J., Caumon, M.-C. and Rull, F., editors). EMU Notes in Mineralogy, 12.Google Scholar
Rossano, S. and Mysen, B. (2012) Raman spectroscopy of silicate glasses and melts in geological systems. Pp. 319364 in: Raman spectroscopy applied to Earth Sciences and Cultural Heritage (Dubessy, J., Caumon, M.-C. and Rull, F., editors). EMU Notes in Mineralogy, 12.Google Scholar
Rull, F. (2012) The Raman Effect and the vibrational dynamics of molecules and crystalline solids. Pp. 160 in: Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage (Dubessy, J., Caumon, M.-C. and Rull, F., editors). EMU Notes in Mineralogy, 12.Google Scholar
Sallé, B., Lacour, J-L., Vors, E., Fichet, P., Maurice, S., Cremers, D.A. and Wiens, R.C. (2004) Laser-Induces Breakdown Spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 14131422.Google Scholar
Sautter, V., Toplis, M.J., Wiens, R.C., Cousin, A., Fabre, C., Gasnault, O., Maurice, S., et al. (2015) In situ evidence for continental crust on early Mars. Nature Geosciences, 8, 605609.Google Scholar
Sautter, V., Toplis, M.J., Beck, P., Mangold, N., Wiens, R., Pinet, P., Cousin, A., Maurice, S., et al. (2016) Magmatic complexity on early Mars as seen through a combination of orbital, in-situ and meteorite data. Lithos, 254–255, 3652.Google Scholar
Sharma, S.K., Simons, B. and Yoder, H.S. Jr (1983) Raman study of anorthite, calcium Tschermak's pyroxene, and gehlnite in crystalline and glassy states. American Mineralogist, 68, 1112.Google Scholar
Squyres, S.W. and Knoll, A.H. (2005) Sedimentary rocks at Meridiani Planum: Origin, diagenesis and implications for life on Mars. Earth Planetary Science Letters, 240, 110.Google Scholar
Stolper, E.M., Baker, M.B., Newcombe, M.E., Schmidt, M.E., Treiman, A.H., Cousin, A., Dyar, M.D. et al. (2013) The petrochemistry of Jake_M: Martian mugearite. Science, 341, Issue 6153, 1239463.Google Scholar
Tarcea, N. and Popp, J. (2012) Raman data analysis. Pp. 195228 in: Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage (Dubessy, J., Caumon, M.-C. and Rull, F., editors). EMU Notes in Mineralogy, 12.Google Scholar
Taylor, S.R. and McLennan, S.M. (editors) (2009) Planetary Crusts. Their Composition, Origin and Evolution. Cambridge University Press, UK. pp. 378.Google Scholar
Tribaudino, M., Mantovani, L., Bersani, D. and Lottici, P.P. (2012) Raman spectroscopy of (Ca,Mg)MgSi2O6 clinopyroxenes. American Mineralogist, 97, 13391347.Google Scholar
Vaniman, D.T, Martínez, G.M., Rampe, E.B., Bristow, T.F., Blake, D.F., et al. (2017) Calcium sulfates at Gale Crater and limitations on gypsum stability. Lunar Planetary Science Conference XLVIII, abstract #1661. [Lunar and Planetary Institute abstracts available at https://www.lpi.usra.edu/publications/absearch/]Google Scholar
Wang, A., Jolliff, B.L., Haskin, L.A., Kuebler, K.E. and Viskupic, K.M. (2001) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. American Mineralogist, 86, 790806.Google Scholar
Wiens, R.C., Maurice, S., Barraclough, B., Saccoccio, M., Barkley, W.C., Bell III, J.F. et al. (2012) The ChemCam instrument suite on the Mars Science Laboratory (MSL) Rover: body unit and combined system tests. Space Science Reviews, 170, 167227.Google Scholar
Wiens, R.C., Maurice, S., Rull, F. and the SuperCam Team (2016) SuperCam remote-sensing on the Mars 2020 Rover: Science goals and overview. 3rd International Workshop on Instrumentation for Planetary Missions. Abstract #4136.Google Scholar
Wray, J., Hansen, S.T., Dufek, J., Swayze, G.A., Murchie, S.L., Seelos, F.P., Skok, J.R., Irwin III, R.P. and Ghiorso, M.S. (2013) Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nature Geoscience, 6, 10131017.Google Scholar
Zajacz, Z., Halter, W., Malfait, W.J., Bachmann, O., Bodnar, R.J., Hirschmann, M.M., Mandeville, C.W., Morizet, Y., Müntener, O., Ulmer, P. and Webster, J.D. (2005) A composition-independent quantitative determination of the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy. Contributions to Mineralogy and Petrology, 150, 631642.Google Scholar
Supplementary material: File

Larre et al. supplementary material

Larre et al. supplementary material 1

Download Larre et al. supplementary material(File)
File 629.8 KB