Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T11:12:36.164Z Has data issue: false hasContentIssue false

Pyrrhotine-pentlandite ore textures: a mechanistic approach

Published online by Cambridge University Press:  05 July 2018

D. P. Kelly
Affiliation:
Department of Geological Sciences, University of Aston in Birmingham, Birmingham B4 7ET
D. J. Vaughan
Affiliation:
Department of Geological Sciences, University of Aston in Birmingham, Birmingham B4 7ET

Abstract

The kinetics and mechanisms of pentlandite [(Fe,Ni)9S8] exsolution from the monosulphide solid solution [or MSS (Fe,Ni)1−xS] have been studied by synthesis and annealing experiments in part of the Fe-Ni-S system particularly relevant to sulphide nickel orebodies. This experimental work has been combined with the examination of the compositions and textures of pyrrhotine-pentlandite intergrowths from a variety of ore deposits. Isothermal annealing of MSS compositions with varying M:S and Fe:Ni ratios at 400 °C shows the formation of a sequence of textures which depend for their full development chiefly on initial M:S ratio and annealing time. The full sequence of textures starts with heterogeneous nucleation of pentlandite at MSS grain boundaries, the growth of these blebs to form ‘rims’, nucleation of finer bladed particles arranged ‘en échelon’ along fractures, and, finally, homogeneous nucleation of fine orientated pentlandite lamellae. Using the information from the annealing experiments, the inter-growths produced by cooling in the natural ores are interpreted using a simplified Time-Temperature-Transformation Model.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, R. G. (1967) Can. Mineral. 9, 3150.Google Scholar
Barrett, F. M., Binns, R. A., Groves D. I, Marston R. J., and McQueen, K. G. (1977). Econ. Geol. 72, 1195– 223.CrossRefGoogle Scholar
Batt, A. P. (1972) Can. Mineral. 11, 892–7.Google Scholar
Boctor, N. Z. (1981) Carnegie Inst. Washington Yearb. 80, 356–9.Google Scholar
Carpenter, R. H., and Desborough, G. A. (1964) Am. Mineral. 49, 1350–65.Google Scholar
Chadwick, G. A. (1972) Metallography of Phase Transformations. Butterworths, London.Google Scholar
Champness, P. E., and Lorimer, G. W. (1976) In Electron Microscopy in Mineralogy (Wenk, H. U., ed.), Springer- Verlag.Google Scholar
Condit, R. H., Hobbins, R. R., and Birchenhall, C. E. (1974) Oxidation of Metals. 8, 409–53.CrossRefGoogle Scholar
Craig, J. R. (1973) Am. J. Sci 273A, 496510.Google Scholar
Craig, J. R. and Vaughan, D. J. (1981) Ore Microscopy and Ore Petrography. Wiley-Interscience.Google Scholar
Duke, J. M., and Naldrett, A. J. (1978) Earth Planetary Sci. Lett. 39, 255–66.CrossRefGoogle Scholar
Durazzo, A., and Taylor, L. A. (1982) Mineral. Deposita, 17, 313–32.Google Scholar
Edwards, A. B. (1947) Textures of the Ore Minerals. Aust. Inst. Min. Metall., Melbourne.Google Scholar
Francis, C. A. (1974) A crystallographic study of the Fe1-xS-Ni1-xS monosulfide solid solution. M.Sc. thesis, Virginia Polytechnic Inst. and State Univ.Google Scholar
Fleet, M. E., Misra, K., and Craig, J. R. (1976) Am. Mineral. 61, 913–20.Google Scholar
Gjostein, N. A. (1973) In Diffusion. Am. Soc. Metals, 242–74.Google Scholar
Gresham, J. J., and Loftus-Hills, G. D. (1981) Econ. Geol. 76, 1373–416.CrossRefGoogle Scholar
Greenwood, G. W. (1969) In The Mechanisms of Phase Transformation in Crystalline Solids. Inst. of Metals (Lond.), 103–10.Google Scholar
Harris, D. C. and Nickel, E. H. (1972) Can. Mineral. 11, 861–78.Google Scholar
Hawley, J. E. (1962) Ibid. 7, 1-207.Google Scholar
Hawley, J. E. and Haw, V. A. (1957) Econ. Geol. 52, 132–9.CrossRefGoogle Scholar
Kanehira, K. (1969) Geol. Surv. Can. Paper 68–5, 79134.Google Scholar
Klotsman, S. M., Timofeyev, A. H., and Trakhtenberg, I. Sh. (1963) Phys. Metal. Metallogr. 16, 92–8.Google Scholar
Kullerud, G. A. (1963) Carnegie Inst. Washington Yearb. 62, 175–86.Google Scholar
Kullerud, G. A. (1971) In Research Techniques for High Pressure and High Temperature (Ulmer, G. C., ed.), Springer-Verlag.Google Scholar
Lear, P. A. (1979) Spec. Pub. Geol. Soc. S. Africa, no. 5, 117–32.Google Scholar
McConnell, J. D. C. (1975) Ann. Rev. Earth Planet. Sci. 3, 129–55.CrossRefGoogle Scholar
Manning, J. R. (1973) In Diffusion. Am Soc. Metals. 1-24.Google Scholar
Marston, R. J., and Kay, B. D. (1980) Econ Geol. 75, 546–65.CrossRefGoogle Scholar
Martin, J. W., and Doherty, R. D. (1976) Stability of Microstructure in Metallic Systems. Cambridge Univ. Press.Google Scholar
Misra, K. C. and Fleet, M. E. (1973a) Econ. Geol. 68, 518–39.CrossRefGoogle Scholar
Misra, K. C. (1973b) Mater. Res. Bull. 8, 669–78.CrossRefGoogle Scholar
Morimoto, H., Gyobu, A., Mukaiyama, H., and Izawa, E. (1975) Econ. Geol. 70, 824–33.CrossRefGoogle Scholar
Naldrett, A. J. (1979) Can. Mineral. 17, 143–5.Google Scholar
Naldrett, A. J. and Cabri, L. J. (1976) Econ. Geol. 71, 1131–1158.CrossRefGoogle Scholar
Naldrett, A. J. Craig, J. R., and Kullerud, G. (1967) Ibid. 62,826–47.Google Scholar
Nicholson, R. B. (1970) In Phase Transformations. Am. Soc. Metals. 269309.Google Scholar
Ostwald, J., and Lusk, J. (1978) Can. J. Earth Sci. 15, 501–15.CrossRefGoogle Scholar
Papunen, H. (1970) Ann. Acad. Sci. Fenn. Ser. AIII, 109.Google Scholar
Polmear, I. J. (1966) J. Austral. Inst. Metals. 11, 246.Google Scholar
Putnis, A., and McConnell, J. D. C. (1980) Principles of Mineral Behaviour. Blackwells, Oxford.Google Scholar
Rajamani, V., and Naldrett, A. J. (1978) Econ. Geol. 73, 8293.CrossRefGoogle Scholar
Rajamani, V., and Prewitt, C. T. (1973) Can. Mineral. 12, 178–87.Google Scholar
Ramdohr, P. (1969, 1981) The Ore Minerals and their Intergrowths. Pergamon, Oxford (1st and 2nd edns.).Google Scholar
Ross, J., and Travis, G. A. (1981) Econ. Geol. 76,1291–329.CrossRefGoogle Scholar
Scott, S. D. (1974) In Sulfide Mineralogy. Min. Soc. Am. Short Course Notes, 1, 51538.Google Scholar
Shewman, R. W., and Clark, L. A. (1970) Can. J. Earth Sci. 7, 6785.CrossRefGoogle Scholar
Smirnov, V. I. (ed.). (1977) Ore Deposits of the USSR, II. Pitman.Google Scholar
Tischler, S. E., Cawthorn, R. G., Kingston, G. A., and Maske, S. A. (1981) Can. Mineral. 19, 607–18.Google Scholar
Uhlmann, D. R., Klein, L., Onorato, P. I. K., and Hopper, R. W. (1975) Proc. Lunar Sci. Conf. 6th, 693705.Google Scholar
Vaughan, D. J., and Craig, J. R. (1978) Mineral Chemistry of Metal Sulfides, Cambridge Univ. Press.Google Scholar
Schwartz, E. J., and Owens, D. R. (1971) Econ Geol. 66, 1131–44.Google Scholar
Wuensch, B. J. (1963) Mineral. Soc Am. Spec. Pap. 1, 157–63.Google Scholar
Yund, R. A., and Hall, H. T. (1970) J. Petrol. 11, 381.CrossRefGoogle Scholar
Yund, R. A. and McCallister, R. H. (1970) Chem. Geol. 6, 530.CrossRefGoogle Scholar