Skip to main content Accessibility help
×
Home

Pseudomorphic transformation of Ca/Mg carbonates into phosphates with focus on dolomite conversion

  • S. Schultheiss (a1), I. Sethmann (a1), M. Schlosser (a1) and H.-J. Kleebe (a1)

Abstract

Hydrothermal conversion of single crystals of calcite, CaCO3, dolomite, CaMg(CO3)2, and magnesite, MgCO3, was carried out in ammonium phosphate buffer solution. While calcite easily forms a pseudomorph of hydroxylapatite, Ca5(PO4)3OH, it takes several weeks to convert magnesite into pseudomorphic dittmarite, (NH4)Mg(PO4)·H2O. The conversion of dolomite, as the compositional intermediate, also proceeded slowly, but yielded a biphasic pseudomorph composed of whitlockite, Ca9Mg(PO4)6O(PO3OH), and dittmarite. To our knowledge, this is the first description of a biphasic pseudomorph with chemically and structurally different phases. Near the surface, the two phases formed a porous layered structure, while towards the core of the single crystal a fine-grained mixture of both minerals precipitated. The initially sequential pattern of precipitation of Ca-rich whitlockite followed by Mg-rich dittmarite can be explained by dissolved Mg ions being adsorbed onto the dolomite surface or incorporated into hydrated magnesium complexes, retarding crystallization of dittmarite. Surface adsorbed Mg ions impeding further dissolution of dolomite also partly accounts for the observed lower reaction rates of dolomite and magnesite, as compared to calcite. An additional factor decreasing the reaction rates of dolomite and magnesite is a considerable increase in molar volume upon conversion, which restricts the formation of porosity and, hence, ion transport to the reaction front.

Copyright

Corresponding author

References

Hide All
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (Editors) (2001) Handbook of Mineralogy, Mineralogical Society of America, Chantilly,, VA 20151-1110, USA. http://www.handbookofmineralogy.org/.
Araiza, M.A., Go´mez-Morales, J., Rodríguez Clemente, R. and Castano, V.M. (1999) Conversion of the echinoderm Mellita eduardobarrosoi calcite skeleton into porous hydroxyapatite by treatment with phosphated boiling solutions. Journal of Material Synthesis and Processing, 7, 211–219
Blum, J.R. (1843) Pseudomorphosen des Mineralreichs. 213 pp. E. Schweizbartsche Verlagshandlung, Stuttgart, Germany.
Calvo, C. and Gopal, R. (1975) The crystal structure of whitlockite from the Palermo quarry. American Mineralogist, 60, 120–133
Chen, Z.F., Darvell, B.W. and Leung, V.W.H. (2004) Hydroxyapatite solubility in simple inorganic solutions. Archives of Oral Biology, 49, 359–367
Downs, R.T. (2006) The rruff project: An integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and abstracts of the 19th general meeting of the international mineralogical association in Kobe, Japan.
Fernández-Díaz, L., Pina, C.M., Astilleros, J.M. and Sánchez-Pastor, N. (2009) The carbonation of gypsum: Pathways and pseudomorph formation. American Mineralogist, 94, 1223–1234
Gareiss, A. (1901) Ueber Pseudomorphosen nach Cordierit. Zeitschrift fü r Kristallographie, Mineralogie und Petrographie, 20, 1–38
Geinitz, F.E. (1880) Zur Systemat ik der Pseudomorphosen. Zeitschrift für Kristallographie, Mineralogie und Petrographie, 2, 489–498
Ito, N., Kamitakahara, M. and Ioku, K. (2012) Preparation of spherical granules of octacalcium phosphate for medical application. Functional Materials Letters, 5, 1260009.
Jolliff, B.L., Freeman, J.J. and Wopenka, B. (1996) Structural comparison of lunar, terrestrial, and synthetic whitlockite using laser Raman microprobe sepctroscopy. Lunar and Planetary Science, 27, 613–614
Kasioptas, A., Perdikouri, C., Putnis, C.V. and Putnis, A. (2008) Pseudomorphic replacement of single calcium carbonate crystals by polycrystalline apatite. Mineralogical Magazine, 72, 77–80
Kasioptas, A., Geisler, T., Putnis, C.V., Perdikouri, C. and Putnis, A. (2010) Crystal growth of apatite by replacement of an aragonite precursor. Journal of Crystal Growth, 312, 2431–2440
Kasioptas, A., Geisler, T., Perdikouri, C., Trepmann, C., Gussone, N. and Putnis, A. (2011) Polycrystalline apatite synthesized by hydrothermal replacement of calcium carbonates. Geochimica et Cosmochimica Acta, 75, 3486–3500
Kerisit, S. and Parker, S.C. (2004) Free energy of adsorption of water and metal ions on the {101¯4} calcite surface. Journal of the American Ceramic Society, 126, 10152–10161
Kilner, R.M. (2006) The evolution of egg colour and patterning in birds. Biological Reviews, 81, 383–406
Klement, R. and Steckenreiter, F. (1940) Untersuchungen ü ber isomorphen Ersatz der Elemente in Alkali-Erdalkaliphosphaten. Zeitschrift für anorganische und allgemeine Chemie, 245, 236–253
Kröhnke, F. (1950) Experimentelle Pseudomorphosen, besonders an organischen Schwermetall- Komplexsalzen. Angewandte Chemie, 62, 222–231
LeGeros, R.Z. (2008) Calcium phosphate-based osteoinductive materials. Chemical Reviews, 108, 4742–4753
LeGeros, R.Z., Sakae, T., Bautista, C., Retino, M. and LeGeros, J.P. (1996) Magnesium and carbonate in enamel and synthetic apatites. Advances in Dental Research, 10, 225–231
Marchegiani, F., Cibej, E., Vergnis, P., Tosi, G., Fermani, S. and Falini, G. (2009) Hydroxyapatite synthesis from biogenic calcite single crystals into phosphate solutions atambient conditions. Journal of Crystal Growth, 311, 4219–4225
Ozeki, K., Aoki, H. and Masuzawa, T. (2010) Influence of the hydrothermal temperature and pH on the crystallinity of a sputtered hydroxyapatite film. Applied Surface Science, 256, 7027–7031
Plummer, L.N. and Busenberg, E. (1982) The solubilities of calcite, aragonite and vaterite on CO2-H2O solutions between 0 and 90ºC, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta, 46, 1011–1040
Pokrovsky, O.S. and Schott, J. (2001) Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited. American Journal of Science, 301, 597–626
Putnis, A. (2002) Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689–708
Putnis, A. (2009) Mineral replacement reactions. Reviews in Mineralogy and Geochemistry, 70, 87–124
Putnis, C.V. and Mezger, K. (2004) A mechanism of mineral replacement: Isotope tracing in the model s ystem KCl-KBr -H2O. Geochimica e t Cosmochimica Acta, 68, 2839–2848
Putnis, C.V., Tsukamoto, K. and Nishimura, Y. (2005) Direct observation of pseudomorphism: Compositional and textural evolution at a fluid-solid interface. American Mineralogist, 90, 1909–1912
Rose, G. (1854) Ueber zwei merkwü rdige Pseudomorphosen von Kalkspath und Eisenglanz. Annalen der Physik, 167, 147–154
Roy, D.M. and Linnehan, S.K. (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature, 247, 220–222
Saldi, G.D., Schott, J., Prokrovsky, O.S. and Oelkers, E.H. (2010) An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200ºC as a function of pH, total dissolved carbonate concentration, and chemical affinity. Geochimica et Cosmochimica Acta, 74, 6344–6365
Santos, C.F.L., Silva, A.P., Lopes, L., Pires, I. and Correia, I.J. (2012) Design and production of sintered beta-tricalcium phosphate 3D scaffolds for bone tissue regeneration. Materials Science & Engineering C – Materials for Biological Applications, 32, 1293–1298
Sarkar, A.K. (1991) Hydration/dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement systems. Journal of Material Science, 26, 2514–2518
Sartoris, D.J., Gershuni, D.H., Akeson, W.H., Holmes, R.E. and Resnick, D. (1986) Coralline hydroxyapatite bone graft substitutes: Preliminary report of radiographic evaluation. Radiology, 159, 133–137
Schlosser, M., Frö ls, S., Hauf, U., Sethmann, I., Schultheiss, S., Pfeifer, F. and Kleebe, H.-J. (2013) Combined hydrothermal conversion and vapor transport sintering of Ag-modified calcium phosphate scaffolds. Journal of the American Ceramic Society, 96, 412–419
Shors, E.C. (1999) Coralline bone graft substitutes. Orthopedic Clinics of North America, 30, 599–613
Soudée, E. and Péra, J. (2000) Mechanism of setting reaction in magnesia-phosphate cements. Cement and Concrete Research, 30, 315–321
Suárez-Orduna, R., Rendo´n-Angeles, J.C., Lo´pez- Cuevas, J. and Yanagisawa, K. (2004) The conversion of mineral celestite to strontianite under alkaline hydrothermal conditions. Journal of Physics: Condensed Matter, 16, 1331–1344
Urosevic, M., Rodriguez-Navarro, C., Putnis, C.V., Cardell, C., Putnis, A. and Ruiz-Agudo, E. (2012) In situ nanoscale observation of the dissolution of {101¯4} dolomite cleavage surfaces. Geochimica et Cosmochimica Acta, 80, 1–13
Velde, B. (1988) Experimental pseudomorphism of diopside by talc and serpentine in (Ni,Mg)Cl2 aqueous solutions. Geochimica et Cosmochimica Acta, 52, 415–424
Wang, L., Ruiz-Agudo, E., Putnis, C.V., Menneken, M. and Putnis, A. (2012) Kinetics of calcium phosphate nucleation and growth on calcite: Implications for predicting the fate of dissolved phosphate species in alkaline soils. Environmental Science & Technology, 46, 834–842
Wojtowicz, J.A. (2001) Calcium carbonate precipitation potential. Journal of the Swimming Pool and Spa Industry, 2, 23–29
Yoshimura, M., Sujaridworakun, P., Koh, F., Fujiwara, T., Pongkao, D. and Ahniyaz, A. (2004) Hydrothermal conversion of calcite crystals to hydroxyapatite. Materials Science and Engineering C, 24, 521525.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed