Skip to main content Accessibility help
×
Home

The potential impact of anaerobic microbial metabolism during the geological disposal of intermediate-level waste

  • A. Rizoulis (a1), H. M. Steele (a2), K. Morris (a1) and J. R. Lloyd (a1) (a2)

Abstract

Microbial metabolism has the potential to control the biogeochemistry of redox-active radionuclides in a range of geodisposal scenarios. In this study, sediments from a high pH lime workings site were incubated under carefully controlled anaerobic conditions, at a range of alkali pH values with added electron donors and electron acceptors, to explore the limits and rates of bioreduction in a sediment system analogous to intermediate-level nuclear waste. There was a clear succession in the utilization of electron acceptors (in the order nitrate > Fe(III)-citrate > Fe(III) oxyhydroxide > sulfate), in accordance with calculated free energy yields and Eh values over the pH range 10–12. The rate and extent of bioreduction decreased at higher pH, with an upper limit for the processes studied at pH 12. The biochemical limits for such processes are discussed, alongside the potential impact of such forms of microbial metabolism on the solubility of a range of redox active radionuclides that will feature heavily in the safety case for the geological disposal of intermediate-level nuclear waste.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The potential impact of anaerobic microbial metabolism during the geological disposal of intermediate-level waste
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The potential impact of anaerobic microbial metabolism during the geological disposal of intermediate-level waste
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The potential impact of anaerobic microbial metabolism during the geological disposal of intermediate-level waste
      Available formats
      ×

Copyright

© [2012] The Mineralogical Society of Great Britain and Ireland. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

References

Hide All
Anderson, L.J., Richardson, D.J. and Butt, J.N. (2000) Using direct electrochemistry to probe rate limiting events during nitrate reductase turnover. Faraday Discussions, 116, 155169.
Baston, G., Heath, T. and Hunter, F. (2007) Summary of additions and amendments to the HATCHES chemical thermodynamic database 20022007.
Serco Assurance Report for UKNIREX number SA-ENV-0934.
Bond, P.L., Smriga, S.P. and Banfield, J.F. (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Applied and Environmental Microbiology, 66, 38423849.
Cutting, R.S., Coker, V.S., Fellowes, J.W., Lloyd, J.R. and Vaughan, D.J. (2009) Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochimica et Cosmochimica Acta, 73, 40044022.
Department for Energy and Climate Change (DECC) (2011) Management of the UK’s Plutonium Stocks. URN 11D/819, Dec 2011. Department for Energy and Climate Change, London.
Department for Environment Fisheries and Rural Affairs (DEFRA), Department for Business, Enterprise and Regulatory Reform (BERR) and the Devolved Administration for Wales and Northern Ireland. (2008) Managing Radioactive Waste Safely: A Framework for Implementing Geological Disposal. DEFRA, London, 100 pp.
Glaus, M.A. and Van Loon, L.R. (2008) Degradation of cellulose under alkaline conditions: new insights from a 12 years degradation study. Environmental Science & Technology, 42, 29062911.
Horikoshi, K. (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews, 63, 735750
Kashefi, K. and Lovley, D.R. (2003) Extending the upper temperature limit for life. Science, 301, 934934.
Lloyd, J.R. (2003) Microbial reduction of metals and radionuclides. FEMS Microbiology Reviews, 27, 411425.
Lloyd, J.R. and Macaskie, L.E. (2000) Bioremediation of radioactive metals. Pp. 277327.in: Environmental microbe-metal interactions (D.R. Lovley, editor). ASM Press, Washington DC.
Lloyd, J.R., Nolting, H.F., Sole, V.A. and Bosecker, K. (1998) Technetium reduction and precipitation by sulfate-reducing bacteria. Geomicrobiology Journal, 15, 4558.
Lloyd, J.R., Sole, V.A., Van Praagh, C.V.G. and Lovley, D.R. (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Applied and Environmental Microbiology, 66, 37433749.
Lloyd, J.R., Chesnes, J., Glasauer, S., Bunker, D.J., Livens, F.R. and Lovley, D.R. (2002) Reduction of actinides and fission products by Fe(III)-reducing bacteria. Geomicrobiology Journal, 19, 103120.
Lloyd, J.R., Byrne, J.M. and Coker, V.S. (2011) Biotechnological synthesis of functional nanomaterials. Current Opinion in Biotechnology, 22, 509515.
Lovley, D.R. and Phillips, E.J.P. (1986) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River. Applied and Environmental Microbiology, 52, 751757.
Lovley, D.R. and Phillips, E.J.P. (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 53, 15361540.
Lovley, D.R., Greening, R.C. and Ferry, J.G. (1984) Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Applied and Environmental Microbiology, 48, 8187.
Madigan, M.T., Martinko, J.M., Dunlap, P.V. and Clark, D.P. (2008) Brock Biology of Microorganisms, twelfth edition. Pearson/Benjamin Cummings, San Francisco, California, USA.
McBeth, J.M., Lloyd, J.R., Law, G.T.W., Livens, F.R., Burke, I.T. and Morris, K. (2011) Redox interactions of technetium with iron-bearing minerals. Mineralogical Magazine, 75, 24192430.
Mesbah, N.M. and Wiegel, J. (2008) Life at extreme limits - the anaerobic halophilic alkalithermophiles. Pp. 4457.in: Incredible Anaerobes: From Physiology to Genomics to Fuels (J. Wiegel R.J. Maier, and M.W.W. Adams, editors). Blackwell Publishing, Oxford, UK.
Miteva, V.I., Sheridan, P.P. and Brenchley, J.E. (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Applied and Environmental Microbiology, 70, 202213.
Morris, K., Law, G.T.W. and Bryan, N.D. (2011) Geodisposal of higher activity wastes. Pp. 129151in: Nuclear Power and the Environment (R.M. Harrison and R.E. Hester, editors). Issues in Environmental Science and Technology, 32 . Royal Society of Chemistry, Cambridge, UK.
Moyes, L.N., Parkman, R.H., Charnock, J.M., Vaughan, D.J., Livens, F.R., Hughes, C.R. and Braithwaite, A. (2000) Uranium uptake from aqueous solution by interaction with goethite, lepidocrocite, muscovite, and mackinawite: an X-ray absorption spectroscopy study. Environmental Science & Technology, 34, 10621068.
Nirex (2003) Generic Post-closure Performance Assessment. Nirex Report N/080.
Nuclear Decommissioning Authority (2007) UK Radioact i ve Wa s t e Invento ry. Nuclear Decommissioning Authority, Moor Row, Cumbria, UK.
Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J. and Harvey, S.M. (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371, 410413.
Parkhurst, D.L. and Appelo, C.A.J. (1999) User’s guide to PHREEQC (version 2) - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 994259.
Pollock, J., Weber, K.A., Lack, J., Achenbach, L.A., Mormile, M.R. and Coates, J.D. (2007) Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp. isolated from salt flat sediments of Soap Lake. Applied Microbiology and Biotechnology, 77, 927934.
Potter, L., Angove, H., Richardson, D. and Cole, J. (2001) Nitrate reduction in the periplasm of Gramnegative bacteria. Advances in Microbial Physiology, 45, 51112.
Richardson, D.J., Berks, B.C., Russell, D.A., Spiro, S. and Taylor, C.J. (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cellular and Molecular Life Sciences, 58, 165178.
Shaw, S., Pepper, S.E., Bryan, N.D. and Livens, F.R. (2005) The kinetics and mechanisms of goethite and hematite crystallization under alkaline conditions, and in the presence of phosphate. American Mineralogist, 90, 18521860.
Sorokin, D.Y. (2005) Is there a limit for high-pH life? International Journal of Systematic and Evolutionary Microbiology, 55, 14051406.
Sorokin, D., Tourova, T., Schmid, M.C., Wagner, M., Koops, H.P., Kuenen, J.G. and Jetten, M. (2001) Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammoniaoxidizing bacteria from Mongolian soda lakes. Archives of Microbiology, 176, 170177.
Sorokin, D.Y., Tourova, T.P., Mussmann, M. and Muyzer, G. (2008) Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles, 12, 431439.
Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, third edition. John Wiley & Sons, Inc., New York.
Takai, K., Moser, D.P., Onstott, T.C., Spoelstra, N., Pfiffner, S.M., Dohnalkova, A. and Fredrickson, J.K. (2001) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. International Journal of Systematic and Evolutionary Microbiology, 51, 12451256.
von Canstein, H., Ogawa, J., Shimizu, S. and Lloyd, J.R. (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and Environmental Microbiology, 74, 615623.
Ye, Q., Roh, Y., Carroll, S.L., Blair, B., Zhou, J.Z., Zhang, C.L. and Fields, M.W. (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Applied and Environmental Microbiology, 70, 55955602.

Keywords

The potential impact of anaerobic microbial metabolism during the geological disposal of intermediate-level waste

  • A. Rizoulis (a1), H. M. Steele (a2), K. Morris (a1) and J. R. Lloyd (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed