Skip to main content Accessibility help

Potassic-jeanlouisite from Leucite Hill, Wyoming, USA, ideally K(NaCa)(Mg4Ti)Si8O22O2: the first species of oxo amphibole in the sodium–calcium subgroup

  • Roberta Oberti (a1), Massimo Boiocchi (a2), Frank C. Hawthorne (a3), Giancarlo Della Ventura (a4) (a5) and Gunnar Färber (a6)...


Potassic-jeanlouisite, ideally K(NaCa)(Mg4Ti)Si8O22O2, is the first characterised species of oxo amphibole related to the sodium–calcium group, and derives from potassic richterite via the coupled exchange CMg–1W ${\rm OH}_{{\rm \ndash 2}}^{\ndash}{} ^{\rm C}{\rm Ti}_1^{{\rm 4 +}} {} ^{\rm W}\!{\rm O}_2^{2\ndash} $ . The mineral and the mineral name were approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification, IMA2018-050. Potassic-jeanlouisite was found in a specimen of leucite which is found in the lava layers, collected in the active gravel quarry on Zirkle Mesa, Leucite Hills, Wyoming, USA. It occurs as pale yellow to colourless acicular crystals in small vugs. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: A(K0.84Na0.16)Σ1.00B(Ca0.93Na1.02Mg0.04 ${\rm Mn}_{{\rm 0}{\rm. 01}}^{2 +} $ )Σ2.00C(Mg3.85 ${\rm Fe}_{{\rm 0}{\rm. 16}}^{2 +} $ Ni0.01 ${\rm Fe}_{{\rm 0}{\rm. 33}}^{3 +} {\rm V}_{{\rm 0}{\rm. 01}}^{3 +} $ Ti0.65)Σ5.01T(Si7.76Al0.09Ti0.15)Σ8.00O22W[O1.53F0.47]Σ2.00. The holotype crystal is biaxial (–), with α = 1.674(2), β = 1.688(2), γ = 1.698(2), 2Vmeas. = 79(1)° and 2Vcalc. = 79.8°. The unit-cell parameters are a = 9.9372(10), b = 18.010(2), c = 5.2808(5) Å, β = 104.955(2)°, V = 913.1(2) Å3, Z = 2 and space group C2/m. The strongest eight reflections in the powder X-ray pattern [d values (in Å) (I) (hkl)] are: 2.703 (100) (151); 3.380 (87) (131); 2.541 (80) ( $\bar 2$ 02); 3.151 (70) (310); 3.284 (68) (240); 8.472 (59) (110); 2.587 (52) (061); 2.945 (50) (221, $\bar 1$ 51).


Corresponding author

*Author for correspondence: Roberta Oberti, Email:


Hide All

Associate Editor: Anthony R Kampf



Hide All
Bartelmehs, K.L., Bloss, F.D., Downs, R.T. and Birch, J.B. (1992) EXCALIBR II. Zeitschrift für Kristallographie, 199, 185196.
Bruker, (2003) SAINT Software Reference Manual. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.
Cannillo, E., Germani, G. and Mazzi, F. (1983) New crystallographic software for Philips PW1100 single crystal diffractometer. CNR Centro di Studio per la Cristallografia Strutturale, Internal Report 2.
Della Ventura, G., Robert, J.-L. and Bény, J.-M. (1991) Tetrahedrally coordinated Ti4+ in synthetic Ti–rich potassic richterite: evidence from XRD, FTIR, and Raman study. American Mineralogist, 76, 11341140.
Della Ventura, G., Robert, J.-L., Bény, J.-M., Raudsepp, M. and Hawthorne, F.C. (1993) The OH–F substitution in Ti-rich potassium-richterites: Rietveld structure refinement and FTIR and micro-Raman spectroscopic studies of synthetic amphiboles in the system K2O–Na2O–CaO–MgO–SiO2–TiO2–H2O–HF. American Mineralogist, 78, 980987.
Krause, L., Herbst–Irmer, R., Sheldrick, G.M. and Stalkeand, D. (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystallography, 48, 310.
Hawthorne, F.C. and Oberti, R. (2007) Amphiboles: Crystal Chemistry. Pp. 154 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy and Geochemistry, 67. The Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.
Hawthorne, F.C., Oberti, R., Cannillo, E., Sardone, N., Zanetti, A., Grice, J.D. and Ashley, P.M. (1995 a) A new anhydrous amphibole from the Hoskins mine, Grenfell, New South Wales, Australia: Description and crystal structure of ungarettiite, NaNa2 (${\rm Mn}_2^{2 +}$Mn3+3)Si8O22O2. American Mineralogist, 80, 165172.
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995 b) Site populations in minerals: terminology and presentation of results of crystal–structure refinement. The Canadian Mineralogist, 33, 907911.
Hawthorne, F.C., Cooper, M.A., Grice, J.D. and Ottolini, L. (2000) A new anhydrous amphibole from the Eifel region, Germany: description and crystal structure of obertiite, NaNa2(Mg3Fe3+Ti4+)Si8O22O2. American Mineralogist, 85, 236241.
Hawthorne, F.C., Ball, N.A. and Czamanske, G.K. (2010) Ferro-obertiite, NaNa2${\rm Fe}_3^{2 +} $Fe3+Ti)Si8O22O2, a new amphibole species of the amphibole group from Coyote Peak, Humboldt County, California. The Canadian Mineralogist, 48, 301306.
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.
Holtstam, D., Cámara, F., Skogby, H., Karlsson, A. and Langhof, J. (2019) Description and recognition of potassic-richterite, an amphibole supergroup mineral from the Pajsberg ore field, Värmland, Sweden. Mineralogy and Petrology, 113, 716.
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part lV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.
Oberti, R., Ungaretti, L., Cannillo, E. and Hawthorne, F.C. (1992) The behaviour of Ti in amphiboles: I. Four– and six–coordinated Ti in richterites. European Journal of Mineralogy, 4, 425439.
Oberti, R., Hawthorne, F.C., Cannillo, E. and Cámara, F. (2007) Long–range order in amphiboles. Pp. 125172 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy and Geochemistry, 67. The Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.
Oberti, R., Boiocchi, M., Hawthorne, F.C., Ball, N.A. and Blass, G. (2017 a) Ferri-obertiite from the Rothenberg quarry, Eifel volcanic complex, Germany: mineral data and crystal-chemistry of a new amphibole end-member. Mineralogical Magazine, 81, 641651.
Oberti, R., Della Ventura, G., Boiocchi, M., Zanetti, A. and Hawthorne, F.C. (2017 b) The crystal-chemistry of oxo-mangani-eakeite and mangano-mangani-ungarettiite from the Hoskins mine and their impossible solid–solution: An XRD and FTIR study. Mineralogical Magazine, 81, 707722.
Oberti, R., Boiocchi, M., Zema, M., Hawthorne, F.C., Redhammer, G.J., Susta, U. and Della Ventura, G. (2018 a) Understanding the peculiar HT behavior of riebeckite: expansivity, deprotonation, Fe-oxidation and a novel cation disorder scheme. European Journal of Mineralogy, 30, 437449.
Oberti, R., Boiocchi, M., Hawthorne, F.C., Della Ventura, G. and Färber, G. (2018 b) Potassic-jeanlouisite, IMA 2018-050. CNMNC Newsletter No. 45, October 2018, page 1227; Mineralogical Magazine, 82, 12251232.
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.
Tait, K.T., Hawthorne, F.C., Grice, J.D., Ottolini, L. and Nayak, V.K. (2005) Dellaventuraite, NaNa2(MgMn3+2Ti4+Li)Si8O22O2, a new anhydrous amphibole from the Kajlidongri Manganese Mine, Jhabua District, Madhya Pradesh, India. American Mineralogist, 90, 304309.
Tiepolo, M., Zanetti, A. and Oberti, R. (1999) Detection, crystal–chemical mechanisms and petrological implications of [6]Ti4+ partitioning in pargasite and kaersutite. European Journal of Mineralogy, 11, 345354.


Type Description Title
Supplementary materials

Oberti et al. supplementary material
Oberti et al. supplementary material 1

 Unknown (16 KB)
16 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed