Skip to main content Accessibility help
×
Home

Parisite-(La), ideally CaLa2(CO3)3F2, a new mineral from Novo Horizonte, Bahia, Brazil

  • Luiz A. D. Menezes Filho (a1), Mario L. S. C. Chaves (a1), Nikita V. Chukanov (a2), Daniel Atencio (a3), Ricardo Scholz (a4), Igor Pekov (a5), Geraldo Magela da Costa (a6), Shaunna M. Morrison (a7), Marcelo B. Andrade (a8), Erico T. F. Freitas (a9), Robert T. Downs (a7) and Dmitriy I. Belakovskiy (a10)...

Abstract

Parisite-(La) (IMA2016-031), ideally CaLa2(CO3)3F2, occurs in a hydrothermal vein crosscutting a metarhyolite of the Rio dos Remédios Group, at the Mula mine, Tapera village, Novo Horizonte county, Bahia, Brazil, associated with hematite, rutile, almeidaite, fluocerite-(Ce), brockite, monazite-(La), rhabdophane-(La) and bastnäsite-(La). Parisite-(La) occurs as residual nuclei (up to 5 mm) in steep doubly-terminated pseudo-hexagonal pyramidal crystals (up to 8.2 cm). Parisite-(La) is transparent, yellow-green to white, with a white streak and displays a vitreous (when yellow-green) to dull (when white) lustre. Cleavage is distinct on pseudo-{001}; fracture is laminated, conchoidal, or uneven. The Mohs hardness is 4 to 5, and it is brittle. Calculated density is 4.273 g cm−3. Parisite-(La) is pseudo-uniaxial (+), ω = 1.670(2) and ε = 1.782(5) (589 nm). The empirical formula normalized on the basis of 11 (O + F) atoms per formula unit (apfu) is Ca0.98(La0.83Nd0.51Ce0.37Pr0.16Sm0.04Y0.03)Σ1.94C3.03O8.91F2.09. The IR spectrum confirms the absence of OH groups. Single-crystal X-ray studies gave the following results: monoclinic (pseudo-trigonal), space group: C2, Cm, or C2/m, a = 12.356(1) Å, b = 7.1368(7) Å, c = 28.299(3) Å, β = 98.342(4)°, V = 2469.1(4) Å3 and Z = 12. Parisite-(La) is the La-dominant analogue of parisite-(Ce).

Copyright

Corresponding author

Footnotes

Hide All

Deceased July 2014

Associate Editor: Stuart Mills

Footnotes

References

Hide All
Adler, H.H and Kerr, P.F. (1963) lnfrared spectra, symmetry and structure relations of some carbonate minerals. American Mineralogist, 48, 839853.
Betancourtt, V.M.R. (2003) Raman Spectroscopic Study of High Temperature Rare Earth Metal – Rare Earth Halide Solutions: Ln–LnX3– and LnX2–LnX3–(LiX–KX)eu Systems (Ln: Nd, Ce; X: Cl, I). Dr. Sci. thesis. Faculty of Chemistry and Biosciences, Karlsruhe University, Germany.
Cheang, K. (1977) Structure and Polytypism in Synchysite and Parisite from Mont St. Hilaire, Quebec. M.S. thesis, Carleton University, Ottawa, Canada.
Enrich, G.E.R., Gomes, C.B. and Ruberti, E. (2010) Química mineral de carbonatos de elementos terras raras em nefelina sienitos e fonólitos agpaíticos do maciço de Cerro Boggiani, Província Alto Paraguay, Paraguai. X Congresso de Geoquímica dos Países de Língua Portuguesa, 2010, Porto. Actas, 2010. v. CD-rom, pp. 223 227.
Flink, G. (1901) Part I. On the minerals from Narsarsuk on the Firth of Tunugdliarfik in Southern Greenland. Parisite. Meddelelser om Grønland, 24, 2942.
Frost, R.L. and Dickfos, M.J. (2007) Raman spectroscopy of halogen-containing carbonates. Journal of Raman Spectroscopy, 38, 15161522.
Frost, R.L., López, A., Scholz, R., Xi, Y. and Belotti, F.M. (2013) Infrared and Raman spectroscopic characterization of the carbonate mineral huanghoite – And in comparison with selected rare earth carbonates. Journal of Molecular Structure, 1051, 221225.
Guastoni, A., Kondo, D. and Nestola, F. (2010) Bastnäsite-(Ce) and parisite-(Ce) from Mt. Malosa, Malawi. Gems & Gemology, 46, 4246.
Hirtopanu, P. (2006) One hundred minerals for one hundred years (dedicated to the Centennial of the Geological Institute of Romania), 3rd Conference on Mineral Sciences in the Carpathians, Miskolc Hungary. Acta Mineralogica–Petrographica, Abstract series, 5, 86.
Hirtopanu, P., Fairhurst, R.J. and Jakab, G. (2015) Niobian rutile and its associations at Jolotca, Ditrau Alkaline Intrusive Massif, East Carpathians, Romania. Proceedings of the Romanian Academy, Series B, 17, 3955.
Jacob, D., Ji, G. and Morniroli, J.P. (2012) A systematic method to identify the space group from PED and CBED patterns part II practical examples. Ultramicroscopy, 121, 6171.
Jambor, J.L., Burke, E.A., Ercit, T.S and Grice, J.D. (1988) New mineral names. American Mineralogist, 73, 14961497.
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. Canadian Mineralogist, 19, 441450.
Martins, A.A.M., Andrade Filho, E.L.A, Loureiro, H.S.C., Arcanjo, J.B.A. and Guimarães, R.V.B. (2008) Geologia da Chapada Diamantina Oriental (Projeto Ibitiara Rio de Contas). Série Arquivos Abertos 31 CPRM (Serviço Geológico do Brasil) and CBPM (Companhia Baiana de Pesquisa Mineral), Salvador, 64 pp.
Menezes Filho, L.A.D., Chukanov, N.V., Rastsvetaeva, R.K., Aksenov, S.M., Pekov, I.V., Chaves, M.L.S.C., Richards, R.P., Atencio, D., Brandão, P.R.G., Scholz, R., Krambrock, K., Moreira, R.L., Guimarães, F.S., Romano, A.W., Persiano, A.C., Oliveira, L.C.A. and Ardisson, J.D. (2015) Almeidaite, Pb(Mn,Y)Zn2(Ti,Fe3+)18O36(O,OH)2, a new crichtonite-group mineral, from Novo Horizonte, Bahia, Brazil. Mineralogical Magazine, 79, 269283.
Moore, M., Chakhmouradian, A.R., Mariano, A.N. and Sidhu, R. (2015) Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: Mineralogical and isotopic evidence. Ore Geology Reviews, 64, 499521.
Morniroli, J.P. (2013) Atlas of Electron Diffraction Zone Axis Patterns, p. 314. Available at: http://www.electron-diffraction.fr.
Morniroli, J.P. and Steeds, J.W. (1992) Microdiffraction as a tool for crystal structure identification and determination. Ultramicroscopy, 45, 219239.
Nakamoto, K. (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic Chemistry. John Wiley and Sons, New York.
Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic Chemistry. (Sixth edition). John Wiley and Sons, New Jersey.
Ni, Y, Post, J.E. and Hughes, J.M. (2000) The crystal structure of parisite-(Ce), Ce2CaF2(CO3)3. American Mineralogist, 85, 251258.
Pedrosa-Soares, A.C., Campos, C., Noce, C.M., Silva, L.C., Novo, T., Roncato, J., Medeiros, S., Castañeda, C., Queiroga, G., Dantas, E., Dussin, I. and Alkmim, F. (2011) Late Neoproterozoic–Cambrian granitic magmatism in the Araçuaí orogen (Brazil), the Eastern Brazilian Pegmatite Province and related deposits. Pp. 2551 in: Granite-Related Ore Deposits (Sial, A.N., Bettencourt, J.S., De Campos, C.P., Ferreira, V.P., editors). Geological Society of London Special Publications, 350.
Ranieri, I.M., Baldochi, S.L. and Klimm, D. (2008) The phase diagram GdF3–LuF3. Journal of Solid State Chemistry, 181(5), 10701074.
Redjaïmia, A. and Morniroli, J.P. (1994) Application of microdiffraction to crystal structure identification. Ultramicroscopy, 53, 305317.
Sulovský, P. (2001) Accessory minerals of the Třebíč durbachite massif (SW Moravia). Mineralia Slovaca, Košice: SGS, 33(5), 467472.
Teixeira, L.R. (2005) Projeto Ibitiara – Rio de Contas, Estado da Bahia. Programa Recursos Minerais do Brasil, Litogeoquímica. CPRM (Serviço Geológico do Brasil) and CBPM (Companhia Baiana de Pesquisa Mineral), Salvador, 33 pp. + xv.
Theye, T., Ockenga, E. and Bertoldi, C. (2003) Davidite(-La), bastnaesite(-La), parisite(-La), monazite(-La): REE minerals at a metabauxite/marble interface in eastern Samos (Greece). Berichte der Deutschen Mineralogischen Gesellschaft, Beihefte zum European Journal of Mineralogy, Vol. 15 (1). ftp://ftp.gmg.rub.de/pub/geo2003/17%20Quantification%20and%20dating%20of%20metamorphic%20processes%20WILLNER/Theye.PDF.
White, W.B. (1974) The carbonate minerals. Pp. 227–284 in: Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society Monograph, 4. London.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed