Skip to main content Accessibility help
×
Home

On the application of the IMA−CNMNC dominant-valency rule to complex mineral compositions

  • Ferdinando Bosi (a1), Frédéric Hatert (a2), Ulf Hålenius (a3), Marco Pasero (a4), Ritsuro Miyawaki (a5) and Stuart J. Mills (a6)...

Abstract

Mineral species should be identified by an end-member formula and by using the dominant-valency rule as recommended by the IMA–CNMNC. However, the dominant-end-member approach has also been used in the literature. These two approaches generally converge, but for some intermediate compositions, significant differences between the dominant-valency rule and the dominant end-member approach can be observed. As demonstrated for garnet-supergroup minerals, for example, the end-member approach is ambiguous, as end-member proportions strongly depend on the calculation sequence. For this reason, the IMA–CNMNC strongly recommends the use of the dominant-valency rule for mineral nomenclature, because it alone may lead to unambiguous mineral identification. Although the simple application of the dominant-valency rule is successful for the identification of many mineral compositions, sometimes it leads to unbalanced end-member formulae, due to the occurrence of a coupled heterovalent substitution at two sites along with a heterovalent substitution at a single site. In these cases, it may be useful to use the site-total-charge approach to identify the dominant root-charge arrangement on which to apply the dominant-constituent rule. The dominant-valency rule and the site-total-charge approach may be considered two procedures complementary to each other for mineral identification. Their critical point is to find the most appropriate root-charge and atomic arrangements consistent with the overriding condition dictated by the end-member formula. These procedures were approved by the IMA−CNMNC in May 2019.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On the application of the IMA−CNMNC dominant-valency rule to complex mineral compositions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On the application of the IMA−CNMNC dominant-valency rule to complex mineral compositions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On the application of the IMA−CNMNC dominant-valency rule to complex mineral compositions
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Ferdinando Bosi, Email: ferdinando.bosi@uniroma1.it

Footnotes

Hide All

Associate Editor: Anthony R Kampf

Footnotes

References

Hide All
Bosi, F. (2018) On the mineral nomenclatures: the dominant-valency rule. Abstract to XXII meeting of the IMA, Melbourne, Australia, 354.
Bayliss, P., Kaesz, H.D. and Nickel, E.H. (2005) The use of chemical-element adjectival modifiers in mineral nomenclature. The Canadian Mineralogist, 43, 14291433.
Bulakh, A.G. (2010) End members, dominant valency, and identifying minerals of mixed composition. Geology of Ore Deposits, 52, 614617.
Dolivo-Dobrovol'sky, V.V. (2010) Dominant valency, end members, and reciprocal systems. Geology of Ore Deposits, 52, 618623.
Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V. and Hålenius, U. (2013) Nomenclature of the garnet supergroup. American Mineralogist, 98, 785811.
Hatert, F. and Burke, E.A.J. (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.
Hawthorne, F.C. (2002) The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals. The Canadian Mineralogist, 40, 699710.
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: Terminology and presentation of the results of crystal-structure refinement. The Canadian Mineralogist, 33, 907911.
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.
Héreng, P. (1989) Contribution à l‘Étude Minéralogique de Phosphates de Fer et de Manganèse de la Pegmatite de Buranga, Rwanda. Thèse de diplome, University of Liège, Belgium.
Kroll, H., Evangelakakis, C. and Voll, G. (1993) Two-feldspar geothermometry: a review and revision for slowly cooled rocks. Contributions to Mineralogy and Petrology, 114, 510518.
Mellini, M., Merlino, S., Orlandi, P. and Rinaldi, R. (1982) Cascadite and jervisite, two new scandium silicates from Baveno, Italy. American Mineralogist, 67, 599603.
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S.J. (2019) New minerals and nomenclature modifications approved in 2019 (Newsletter 49). Mineralogical Magazine, 83, 323328.
Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature. The Canadian Mineralogist, 36, 913926.
Putirka, K. (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101, 841858.
Rickwood, P.C. (1968) On recasting analyses of garnet into end-member molecules. Contributions to Mineralogy and Petrology, 18, 175198.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed