Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-19T05:15:19.667Z Has data issue: false hasContentIssue false

New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. X. Edtollite, K2NaCu5Fe3+O2(AsO4)4, and alumoedtollite, K2NaCu5AlO2(AsO4)4

Published online by Cambridge University Press:  02 October 2018

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Dmitry A. Ksenofontov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Leonid A. Pautov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
Sergey N. Britvin
Affiliation:
Department of Crystallography, St Petersburg State University, University Embankment 7/9, 199034 St Petersburg, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry Y. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*
*Author for correspondence: Igor V. Pekov, Email: igorpekov@mail.ru

Abstract

Two new isostructural minerals edtollite K2NaCu5Fe3+O2(AsO4)4 and alumoedtollite K2NaCu5AlO2(AsO4)4 have been found in the Arsenatnaya fumarole, Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. They are associated with sylvite, tenorite, dmisokolovite, shchurovskyite, johillerite, bradaczekite, and orthoclase. Edtollite forms prismatic crystals up to 0.02 mm × 0.1 mm; alumoedtollite forms long-prismatic crystals up to 0.01 mm × 0.1 mm. Both minerals have a semi-metallic lustre. Edtollite is brown–black to black and alumoedtollite is bronze coloured. Dcalc. = 4.26 (edtollite) and 4.28 (alumoedtollite) g cm–3. In reflected light, both minerals are grey, with distinct anisotropy. Reflectance values [edtollite/alumoedtollite: R1R2, % (λ, nm)] are: 8.3–8.2/8.7–7.7 (470); 7.7–7.4/8.3–7.4 (546); 7.1–6.9/8.3–7.4 (589); and 6.3–6.3/7.6–7.2 (650). Chemical data are: (edtollite/alumoedtollite, wt.%, electron-microprobe): Na2O 3.13/2.58, K2O 8.12/9.09, Rb2O 0.00/0.11, CaO 0.00/0.52, CuO 36.55/38.35, ZnO 0.46/0.00, Al2O3 0.00/3.48, Fe2O3 7.34/1.79, TiO2 0.27/0.00, As2O5 43.57/43.66, total 99.44/99.58. The empirical formulae, based on 18 O apfu, for edtollite is: K1.83Na1.07Cu4.88Zn0.06Fe3+0.98Ti0.04As4.03O18; and for alumoedtollite is: K2.02Rb0.01Na0.87Ca0.10Cu5.06Al0.72Fe3+0.24As3.99O18. Both minerals are triclinic, P$\bar{1}$; unit-cell parameters (edtollite/alumoedtollite) are: a = 5.1168(6)/5.0904(11), b = 9.1241(12)/9.0778(14), c = 9.6979(14)/9.6658(2) Å, α = 110.117(13)/110.334(17), β = 102.454(12)/102.461(19), γ = 92.852(11)/92.788(15)°, V = 411.32(9)/404.88(14) Å3 and Z = 1/1. The strongest reflections in the powder X-ray diffraction pattern [d,Å(I)(hkl)] are for edtollite: 8.79(92)(001), 7.63(41)(0$\bar{1}$1), 5.22(44)(011), 3.427(100)(012), 3.148(64)(0$\bar{1}$3), 2.851(65)($\bar{1}$03) and 2.551(40)($\bar{2}$01); and for alumoedtollite: 8.78(81)(001), 7.62(67)(0$\bar{1}$1), 3.418(100)(012), 3.147(52)(0$\bar{1}$3), 2.558(58)($\bar{1}$22), 2.544(65)($\bar{2}$01) and 2.528(52)($\bar{1}\bar{3}$2). The crystal structures [single-crystal X-ray diffraction, R = 0.0773 (edtollite) and 0.0826 (alumoedtollite); 1504 and 1046 unique reflections, respectively] represent a novel structure type. It is based upon a heteropolyhedral pseudo-framework with the column formed by Cu2+-centred octahedra and square pyramids, octahedra MO6 (M = Fe3+, Al3+ or Cu2+) and AsO4 tetrahedra as the main building unit. K+ and Na+ are located in wide and narrow channels, respectively. Edtollite is named after the Russian geologist and Arctic explorer Eduard Vasilievich Toll (1858–1902), alumoedtollite is its analogue with Al prevailing among trivalent cations.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ferdinando Bosi

References

Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar
Bosi, F. (2014) Bond valence at mixed occupancy sites. I. Regular polyhedra. Acta Crystallographica, B70, 864870.Google Scholar
Brese, N.E. and O`Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Effenberger, H. (1985) Zur chemischen Zusammensetzung von Caratiit. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 130, 2931.Google Scholar
Effenberger, H. and Zemann, J. (1984) The crystal structure of caratiite. Mineralogical Magazine, 48, 541546.Google Scholar
Gorskaya, M.G., Filatov, S.K., Rozhdestvenskaya, I.V. and Vergasova, L.P. (1992) The crystal structure of klyuchevskite, K3Cu3(Fe,Al)O2(SO4)4, a new mineral from Kamchatka volcanic sublimates. Mineralogical Magazine, 56, 411416.Google Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.Google Scholar
Kahlenberg, V., Piotrowski, A. and Giester, G. (2000) Crystal structure of Na4[Cu4O2(SO4)4]·MeCl (Me: Na, Cu, □) – the synthetic Na-analogue of piypite (caratiite). Mineralogical Magazine, 64, 10991108.Google Scholar
Krivovichev, S.V., Filatov, S.K. and Cherepansky, P.N. (2009) The crystal structure of alumoklyuchevskite, K3Cu3AlO2(SO4)4. Geology of Ore Deposits, 51, 656662.Google Scholar
Krivovichev, S.V., Mentre, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 64596535.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineralogical Magazine, 78, 905917.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu4O(AsO4)2. Mineralogical Magazine, 78, 15271543.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Chukanov, N.V., Lykova, I.S., Saveliev, D.P., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014 c) Wulffite, K3NaCu4O2(SO4)4, and parawulffite, K5Na3Cu8O4(SO4)8, two new minerals from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. The Canadian Mineralogist, 52, 699716.Google Scholar
Pekov, I.V., Britvin, S.N., Yapaskurt, V.O., Polekhovsky, Y.S., Krivovichev, S.V., Vigasina, M.F. and Sidorov, E.G. (2015 a) Arsmirandite, IMA 2014-081. CNMNC Newsletter No. 23, February 2015, page 57; Mineralogical Magazine, 79, 5158.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu5O2(AsO4)2. Mineralogical Magazine, 79, 133143.Google Scholar
Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015 c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K2CaCu6O2(AsO4)4, and dmisokolovite, K3Cu5AlO2(AsO4)4. Mineralogical Magazine, 79, 17371753.Google Scholar
Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2016 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO4). Mineralogical Magazine, 80, 639646.Google Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Chukanov, N.V., Belakovskiy, D.I., Sidorov, E.G., Britvin, S.N. and Pushcharovsky, D.Yu. (2016 b) Eleomelanite, IMA 2015–118. CNMNC Newsletter No. 30, April 2016, page 412. Mineralogical Magazine, 80, 407413.Google Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Pautov, L.A., Vigasina, M.F., Sidorov, E.G., Ksenofontov, D.A., Britvin, S.N. and Pushcharovsky, D.Y. (2016 c) Edtollite, IMA 2016-010. CNMNC Newsletter No. 31, June 2016, page 696; Mineralogical Magazine, 80, 691697.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016 d) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K3Cu7Fe3+O4(AsO4)4. Mineralogical Magazine, 80, 855867.Google Scholar
Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 10011008.Google Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Sidorov, E.G., Ksenofontov, D.A., Britvin, S.N. and Pushcharovsky, D.Y. (2017 b) Alumoedtollite, IMA2017-020. CNMNC Newsletter No. 38, August 2017, page 1034; Mineralogical Magazine, 81, 10331038.Google Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I., Sidorov, E.G. and Pushcharovsky, D.Yu. (2018 a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, Mg2(AsO4)F. Mineralogical Magazine, 82, 877888.Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018 b) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.Google Scholar
Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Belakovskiy, D.I., Vigasina, M.F., Yapaskurt, V.O., Sidorov, E.G., Britvin, S.N. and Pushcharovsky, D.Yu. (2018 c) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IX. Arsenatrotitanite, NaTiO(AsO4). Mineralogical Magazine, 82, DOI: https://doi.org/10.1180/mgm.2018.134Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Lukina, E.A., Avdontseva, E.Y., Vergasova, L.P., Vlasenko, N.S., Filatov, S.K., Turner, R. and Karpov, G.A. (2017) Copper oxosulphates from fumaroles of Tolbachik volcano: puninite, Na2Cu3O(SO4)3 – a new mineral species and structure refinements of kamchatkite and alumoklyuchevskite. European Journal of Mineralogy, 29, 499510.Google Scholar
Starova, G.L., Krivovichev, S.V. and Filatov, S.K. (1998) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. II. The crystal structure of Cu4O2[(As,V)O4]Cl. Zeitschrift für Kristallographie, 213, 650653.Google Scholar
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material 1

Download Pekov et al. supplementary material(File)
File 68.8 KB
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material 2

Download Pekov et al. supplementary material(File)
File 64.2 KB
Supplementary material: PDF

Pekov et al. supplementary material

Pekov et al. supplementary material 3

Download Pekov et al. supplementary material(PDF)
PDF 1.7 MB