Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T17:30:33.693Z Has data issue: false hasContentIssue false

Modelling metal–humic substances–surface systems: reasons for success, failure and possible routes for peace of mind

Published online by Cambridge University Press:  05 July 2018

P. E. Reiller*
Affiliation:
Commissariat à l’Energie Atomique et aux énergies alternatives, CE Saclay, CEA, DEN, DANS, DPC, SEARS, Laboratoire de développement Analytique Nucléaire Isotopique et Elémentaire, Bâtiment 391, PC 33, F-91191 Gif-sur-Yvette CEDEX, France

Abstract

Iron oxides and oxyhydroxides are commonly of considerable importance in the sorption of ions onto rocks, soils and sediments. They can be the controlling sorptive phases even if they are present in relatively small quantities. In common with other oxides and clay minerals, the sorption pH-edge of metals is directly linked to their hydrolysis: the higher the residual charge on the metal ion, the lower the pH-edge. Modelling of this process has been successfully carried out using different microscopic or macroscopic definitions of the interface (e.g. surface complexation or ion exchange models that may or may not include mineralogical descriptions). The influence of organic material on the sorption of many metals is of significant. This organic material includes simple organic molecules and more complex exopolymeric substances (e.g. humic substances) produced by the decay of natural organic matter. Sorption of this organic material to mineral surfaces has been the subject of a large body of work. The various types of organic substances do not share the same affinities for mineral surfaces in general, and for iron oxides and oxyhydroxides in particular. In those cases in which successful models of the component binary systems (i.e. metal–surface, metal–organic, organic–surface) have been developed, the formation of mixed surface complexes, the evolution of the surface itself, the addition order in laboratory systems, and the evolution of natural organic matter fractions during sorption, have often precluded a satisfactory description of metal–surface–organic ternary systems over a sufficiently wide range of parameter values (i.e. pH, ionic strength, concentration of humic substances). This manuscript describes the reasons for some successes and failures in the modelling of the ternary systems. Promising recent advances and possible methods of providing more complete descriptions of these intricate systems are also discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achard, F.K. (1786) Chemische Untersuchung des Torfs. Chemische Annalen für die Freunde der Naturlehre, Arzneygelahrtheit, Haushaltungskunst und Manufacturen, 2, 391403.Google Scholar
Aiken, G.R. and Malcolm, R.L. (1987) Molecular weight of aquatic fulvic acids by vapor pressure osmometry. Geochimica et Cosmochimica Acta, 51, 21772184.CrossRefGoogle Scholar
Aiken, G.R., McKnight, D., Wershaw, R.L. and MacCarthy, P. (1985) Humic Substances in Soil, Sediment and Water. Wiley-Intersciences, New York, 692 pp.Google Scholar
Ali, M.A. and Dzombak, D.A. (1996) Competitive sorption of simple organic acids and sulfate on goethite. Environmental Science & Technology, 30, 10611071.CrossRefGoogle Scholar
Alliot, C., Vitorge, P., Bion, L. and Mercier, F. (2005a) Effect of aqueous acetic, oxalic and carbonic acids on the adsorption of uranium(VI) onto a-alumina. New Journal of Chemistry, 29, 14091415.CrossRefGoogle Scholar
Alliot, C., Bion, L., Mercier, F., Vitorge, P. and Toulhoat, P. (2005b) Effect of aqueous acetic, oxalic and carbonic acids on the adsorption of americium onto a-alumina. Radiochimica Acta, 93, 435442.CrossRefGoogle Scholar
Alliot, C., Bion, L., Mercier, F. and Toulhoat, P. (2006) Effect of aqueous acetic, oxalic, and carbonic acids on the adsorption of europium(III) onto a-alumina. Journal of Colloid and Interface Science, 298, 573581.CrossRefGoogle Scholar
Amal, R., Raper, J.A. and Waite, T.D. (1992) Effect of fulvic acid adsorption on the aggregation kinetics and structure of hematite particles. Journal of Colloid and Interface Science, 151, 244257.CrossRefGoogle Scholar
Andre’, C. and Choppin, G.R. (2000) Reduction of Pu(V) by humic acid. Radiochimica Acta, 88, 613616.Google Scholar
Artinger, R., Marquardt, C.M., Kim, J.I., Seibert, A., Trautmann, N. and Kratz, J.V. (2000) Humic colloidborne Np migration: Influence of the oxidation state. Radiochimica Acta, 88, 609612.CrossRefGoogle Scholar
Au, K.K., Penisson, A.C., Yang, S.L. and O’Melia, C.R. (1999) Natural organic matter at oxide/water interfaces: Complexation and conformation. Geochimica et Cosmochimica Acta, 63, 29032917.CrossRefGoogle Scholar
Avena, M.J. and Koopal, L.K. (1998) Desorption of humic acids from an iron oxide surface. Environmental Science & Technology, 32, 25722577.CrossRefGoogle Scholar
Avena, M.J. and Koopal, L.K. (1999) Kinetics of humic acid adsorption at solid water interface. Environmental Science & Technology, 33, 27392744.CrossRefGoogle Scholar
Baalousha, M. and Lead, J.R. (2007) Characterization of natural aquatic colloids (<5 nm) by flow-field flow fractionation and atomic force microscopy. Environmental Science & Technology, 41, 11111117.CrossRefGoogle ScholarPubMed
Beneš, P. (2009) Radiotracer study of thorium complexation with humic acid at pH 2–11.using free-liquid electrophoresis. Radiochimica Acta, 97, 273281.CrossRefGoogle Scholar
Blaakmeer, J., Bohmer, M.R., Cohen Stuart, M.A. and Fleer, G.J. (1990) Adsorption of weak polyelectrolytes on highly charged surfaces: poly(acrylic acid) on polystyrene latex with strong cationic groups. Macromolecules, 23, 23012309.CrossRefGoogle Scholar
Blesa, M.A., Maroto, A.J.G. and Regazzoni, A.E. (1984) Boric adsorption on magnetite and zirconium dioxide. Journal of Colloid and Interface Science, 99, 3240.CrossRefGoogle Scholar
Bohmer, M.R., Evers, O.A. and Scheutjens, J.M.H.M. (1990) Weak polyelectrolytes between 2 surfaces: adsorption and stabilization. Macromolecules, 23, 22882301.CrossRefGoogle Scholar
Booth, F. (1951) The dielectric constant of water and the saturation effect. Journal of Chemical Physics, 19, 391394.CrossRefGoogle Scholar
Borah, J.M., Sarma, J. and Mahiuddin, S. (2011) Adsorption comparison at the alpha-alumina/water interface: 3,4-Dihydroxybenzoic acid vs. catechol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 387, 5056.CrossRefGoogle Scholar
Bouby, M., Manh, T.N., Geckeis, H., Scherbaum, F. and Kim, J.I. (2002) Characterization of aquatic colloids by a combination of LIBD and ICP-MS following the size fractionation. Radiochimica Acta, 90, 727732.CrossRefGoogle Scholar
Bouby, M., Geckeis, H., Lutzenkirchen, J., Mihai, S. and Scha‥fer, T. (2011) Interaction of bentonite colloids with Cs, Eu, Th and U in presence of humic acid: a flow field-flow fractionation study. Geochimica et Cosmochimica Acta, 75, 38663880.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B. (2002) Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochimica et Cosmochimica Acta, 66, 23252334.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B. (2005a) Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochimica et Cosmochimica Acta, 69, 875892.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B. (2005b) Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochimica et Cosmochimica Acta, 69, 53915392.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B. (2009) Sorption modelling on illite. Part II: actinide sorption and linear free energy relationships. Geochimica et Cosmochimica Acta, 73, 10041013.CrossRefGoogle Scholar
Bradbury, M.H., Baeyens, B., Geckeis, H. and Rabung, T. (2005) Sorption of Eu(III)/Cm(III) on Camontmorillonite and Na-illite. Part 2: surface complexation modelling. Geochimica et Cosmochimica Acta, 69, 54035412.CrossRefGoogle Scholar
Caceci, M.S. and Billon, A. (1990) Evidence for large organic scatterers (50–200.nm diameter) in humic acid samples. Organic Geochemistry, 15, 335350.CrossRefGoogle Scholar
Chibowski, S. and Wisniewska, M. (2002) Study of electrokinetic properties and structure of adsorbed layers of polyacrylic acid and polyacrylamide at Fe2O3-polymer solution interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 208, 131145.CrossRefGoogle Scholar
Chin, Y.P., Aiken, G. and O’Loughlin, E. (1994) Molecular-weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science & Technology, 28, 18531858.CrossRefGoogle ScholarPubMed
Christl, I. and Kretzschmar, R. (2001) Interaction of copper and fulvic acid at the hematite-water interface. Geochimica et Cosmochimica Acta, 65, 34353442.CrossRefGoogle Scholar
Christl, I. and Kretzschmar, R. (2007) C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation. Environmental Science & Technology, 41, 19151920.CrossRefGoogle ScholarPubMed
Christl, I., Milne, C.J., Kinniburgh, D.G. and Kretzschmar, R. (2001) Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding. Environmental Science & Technology, 35, 25122517.CrossRefGoogle ScholarPubMed
Claret, F., Schafer, T., Brevet, J. and Reiller, P.E. (2008) Fractionation of Suwannee River fulvic acid and Aldrich humic acids on a-Al2O3: spectroscopic evidence. Environmental Science & Technology, 42, 88098815.CrossRefGoogle Scholar
Czerwinski, K.R., Buckau, G., Scherbaum, F. and Kim, J.I. (1994) Complexation of the uranyl ion with aquatic humic acid. Radiochimica Acta, 65, 111119.CrossRefGoogle Scholar
Czerwinski, K.R., Kim, J.I., Rhee, D.S. and Buckau, G. (1996) Complexation of trivalent actinides ions (Am3+, Cm3+) with humic acids: the effect of ionic strength. Radiochimica Acta, 72, 179187.CrossRefGoogle Scholar
d’Orlye’, F. and Reiller, P.E. (2012) Contribution of capillary electrophoresis to an integrated vision of humic substances size and charge characterizations. Journal of Colloid and Interface Science, 368, 231240.CrossRefGoogle Scholar
Dalang, F., Buffle, J. and Haerdl, W. (1984) Study of the influence of fulvic substances on the adsorption of copper(II) ions at the kaolinite surface. Environmental Science & Technology, 18, 135141.CrossRefGoogle ScholarPubMed
Dardenne, K., Seibert, A., Denecke, M.A. and Marquardt, C.M. (2009) Plutonium(III,IV,VI) speciation in Gorleben groundwater using XAFS. Radiochimica Acta, 97, 9197.CrossRefGoogle Scholar
Davis, J.A. and Gloor, R. (1981) Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight. Environmental Science & Technology, 15, 12231229.CrossRefGoogle ScholarPubMed
Davis, J.A. and Kent, D.B. (1990) Surface complexation modeling in aqueous geochemistry. Pp. 177260.in: Mineral-Water Interface Geochemistry (M.F. Hochella, and A.F. White, editors). Reviews in Mineralogy, 23. Mineralogical Society of America, Washington DC.Google Scholar
Davis, J.A. and Leckie, J.O. (1978) Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Environmental Science & Technology, 12, 13091315.CrossRefGoogle Scholar
Dierckx, A., Maes, A. and Vancluysen, J. (1994) Mixed complex formation of Eu3+ with humic acid and a competing ligand. Radiochimica Acta, 66/67, 149156.Google Scholar
Dzombak, D.A. and Morel, M.M. (1990) Surface Complexation Modelling. John Wiley & Sons, New York.Google Scholar
Evanko, C.R. and Dzombak, D.A. (1998) Influence of structural features on sorption of NOM-analogue organic acids to goethite. Environmental Science & Technology, 32, 28462855.CrossRefGoogle Scholar
Fairhurst, A.J., Warwick, P. and Richardson, S. (1995) The influence of humic-acid on the adsorption of europium onto inorganic colloids as a function of pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 99, 187199.CrossRefGoogle Scholar
Filius, J.D., Lumsdon, D.G., Meeussen, J.C.L., Hiemstra, T. and van Riemsdijk, W.H. (2000) Adsorption of fulvic acid on goethite. Geochimica et Cosmochimica Acta, 64, 5160.CrossRefGoogle Scholar
Fujikawa, Y., Zheng, J., Cayer, I., Sugahara, M., Takigami, H. and Kudo, A. (1999) Strong association of fallout plutonium with humic and fulvic acid as compared to uranium and 137Cs in Nishiyama soils from Nagasaki, Japan. Journal of Radioanalytical and Nuclear Chemistry, 240, 6974.CrossRefGoogle Scholar
Ghabbour, E.A. and Davies, G. (2001) Humic Substances. Structures, Models and Functions. The Royal Society of Chemistry, Cambridge, UK, 387 pp.CrossRefGoogle Scholar
Glaus, M.A., Hummel, W., and van Loon, L.R. (1995) Stability of mixed-ligand complexes of metal ions with humic substances and low molecular weight ligands. Environmental Science & Technology, 29, 2150–3CrossRefGoogle Scholar
Gu, B., Schmitt, J., Chem, Z., Liang, L. and McCarthy, J.F. (1994) Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environmental Science & Technology, 28, 3846.CrossRefGoogle ScholarPubMed
Gu, B., Schmitt, J., Chem, Z., Liang, L. and McCarthy, J.F. (1995) Adsorption and desorption of different organic matter fraction on iron oxide. Geochimica et Cosmochimica Acta, 59, 219229.CrossRefGoogle Scholar
Heidmann, I., Christl, I. and Kretzschmar, R. (2005) Sorption of Cu and Pb to kaolinite-fulvic acid colloids: assessment of sorbent interactions. Geochimica et Cosmochimica Acta, 69, 16751686.CrossRefGoogle Scholar
Hiemstra, T., van Riemsdijk, W.H. and Bolt, G.H. (1989a) Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. I. Model description and evaluation of intrinsic reaction constants. Journal of Colloid and Interface Science, 133, 91104.CrossRefGoogle Scholar
Hiemstra, T., de Wit, J.C.M. and van Riemsdijk, W.H. (1989b) Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. II. Application to various important (hydr)oxides. Journal of Colloid and Interface Science, 133, 105117.CrossRefGoogle Scholar
Hummel, W. (1997) Binding models for humic substances. Pp. 153206.in: Modelling in Aquatic Chemistry (I. Grenthe, and I. Puigdoménech, editors). OECD's Nuclear Energy Agency, Paris.Google Scholar
Hur, J. and Schlautman, M.A. (2003) Molecular weight fractionation of humic substances by adsorption onto minerals. Journal of Colloid and Interface Science, 264, 313321.CrossRefGoogle ScholarPubMed
Hur, J. and Schlautman, M.A. (2004a) Influence of humic substance adsorptive fractionation on pyrene partitioning to dissolved and mineral-associated humic substances. Environmental Science & Technology, 38, 58715877.CrossRefGoogle Scholar
Hur, J. and Schlautman, M.A. (2004b) Effects of pH and phosphate on the adsorptive fractionation of purified Aldrich humic acid on kaolinite and hematite. Journal of Colloid and Interface Science, 277, 264270.CrossRefGoogle Scholar
Irving, H. and Williams, R.J.P. (1948) Order of stability of metal complexes. Nature, 162, 746747.CrossRefGoogle Scholar
Janot, N. (2011) Influence de la matiére organique naturelle et des surfaces mine’rales sur la spe’ciation des radionucle’ides en contexte environnemental. Géochimie Fondamentale et Appliquée. PhD thesis, Institut de Physique du Globe de Paris, Universite’ Denis Diderot, Paris, 183 pp.Google Scholar
Janot, N., Reiller, P.E., Korshin, G.V. and Benedetti, M.F. (2010) Using spectrophotometric titrations to characterize humic acid reactivity at environmental concentration. Environmental Science & Technology, 44, 67826788.CrossRefGoogle Scholar
Janot, N., Benedetti, M.F. and Reiller, P.E. (2011) Colloidal a-Al2O3, europium(III) and humic substances interactions: a macroscopic and spectroscopic study. Environmental Science & Technology, 45, 32243230.CrossRefGoogle Scholar
Janot, N., Reiller, P.E., Zheng, X., Croue’, J.-P. and Benedetti, M.F. (2012) Characterization of humic acid reactivity modifications due to adsorption onto a-Al2O3. Water Research, 46, 731740.CrossRefGoogle Scholar
Johnson, W.P., Bao, G.B. and John, W.W. (2002) Specific UV absorbance of Aldrich humic acid: changes during transport in aquifer sediment. Environmental Science & Technology, 36, 608616.CrossRefGoogle ScholarPubMed
Kaiser, K. and Guggenberger, G. (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry, 31, 711725.CrossRefGoogle Scholar
Kaiser, K. and Zech, W. (1997) Competitive sorption of dissolved organic matter fractions to soils and related mineral phases. Soil Science Society of America Journal, 61, 6469.CrossRefGoogle Scholar
Kerndorff, H. and Schnitzer, M. (1980) Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 44, 17011708.CrossRefGoogle Scholar
Kim, J.I. and Sekine, T. (1991) Complexation of neptunium(V) with humic acid. Radiochimica Acta, 55, 187192.CrossRefGoogle Scholar
Kim, S., Simpson, A.J., Kujawinski, E.B., Freitas, M.A. and Hatcher, P.G. (2003) High resolution electrospray ionization mass spectrometry and 2D solution NMR for the analysis of DOM extracted by C-18 solid phase disk. Organic Geochemistry, 34, 13251335.CrossRefGoogle Scholar
Kinniburgh, D.G., van Riemsdijk, W.H., Koopal, L.K., Borkovec, M., Benedetti, M.F. and Avena, M.J. (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151, 147166.CrossRefGoogle Scholar
Krepelova, A., Sachs, S. and Bernhard, G. (2006) Uranium(VI) sorption onto kaolinite in the presence and absence of humic acid. Radiochimica Acta, 94, 825833.CrossRefGoogle Scholar
Kujawinski, E.B., Hatcher, P.G. and Freitas, M.A. (2002a) High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids: improvements and comparisons. Analytical Chemistry, 74, 413419.CrossRefGoogle ScholarPubMed
Kujawinski, E.B., Freitas, M.A., Zang, X., Hatcher, P.G., Green-Church, K.B. and Jones, R.B. (2002b) The application of electrospray ionization mass spectrometry (ESI MS) to the structural characterization of natural organic matter. Organic Geochemistry, 33, 171180.CrossRefGoogle Scholar
Lavoisier, A.L. (1789) Traité Elémentaire de Chimie. Présenté dans un Ordre Nouveau et d’aprés des Découvertes Modernes. Tome Premier. Cuchet, Paris.CrossRefGoogle Scholar
Lenhart, J.J. and Honeyman, B.D. (1999) Uranium(VI) sorption to hematite in the presence of humic acid. Geochimica et Cosmochimica Acta, 63, 28912901.CrossRefGoogle Scholar
MacCarthy, P. (2001a) The principles of humic substances: an introduction to the first principle. Pp. 1930.in: Humic Substances: Structures, Models And Functions (E.A. Ghabbour, and G. Davies, editors). The Royal Society of Chemistry, Cambridge, UK.CrossRefGoogle Scholar
MacCarthy, P. (2001b) The principles of humic substances. Soil Science, 166, 738751.CrossRefGoogle Scholar
Mahara, Y. and Kudo, A. (1995) Plutonium released by the Nagasaki A-bomb: mobility in the environment. Applied Radiation and Isotopes, 46, 11911201.CrossRefGoogle Scholar
Mahara, Y. and Miyahara, S. (1984) Residual plutonium migration in soil of Nagasaki. Journal of Geophysical Research, 89, 79317936.CrossRefGoogle Scholar
Mahara, Y., Kudo, A., Kauri, T., Santry, D.C. and Miyahara, S. (1988) Mobile Pu in reservoir sediments of Nagasaki, Japan. Health Physics, 54, 107111.Google ScholarPubMed
Manning, T.J. and Bennett, D.M. (2000) Aggregation studies of humic acid using multiangle laser light scattering. The Science of the Total Environment, 257, 171176.CrossRefGoogle ScholarPubMed
Marang, L., Reiller, P., Pepe, M. and Benedetti, M.F. (2006) Donnan membrane approach: from equilibrium to dynamic speciation. Environmental Science & Technology, 40, 54965501.CrossRefGoogle ScholarPubMed
Marang, L., Reiller, P.E., Eidner, S., Kumke, M.U. and Benedetti, M.F. (2008) Combining spectroscopic and potentiometric approaches to characterize competitive binding to humic substances. Environmental Science & Technology, 42, 50945098.CrossRefGoogle ScholarPubMed
Marmier, N. and Fromage, F. (2000) Sorption of Cs(I) on magnetite in the presence of silicates. Journal of Colloid and Interface Science, 223, 8388.CrossRefGoogle ScholarPubMed
Marquardt, C.M., Seibert, A., Artinger, R., Denecke, M.A., Kuczewski, B., Schild, D. and Fangha‥nel, T. (2004) The redox behaviour of plutonium in humic rich groundwater. Radiochimica Acta, 92, 617623.CrossRefGoogle Scholar
Matsunaga, T., Nagao, S., Ueno, T., Takeda, S., Amano, H. and Tkachenko, Y. (2004) Association of dissolved radionuclides released by the Chernobyl accident with colloidal materials in surface water. Applied Geochemistry, 19, 15811599.CrossRefGoogle Scholar
Maurice, P.A. and Namjesnik-Dejanovic, K. (1999) Aggregate structures of sorbed humic substances observed in aqueous solution. Environmental Science & Technology, 33, 15381541.CrossRefGoogle Scholar
McCarthy, J.F., Sanford, W.E. and Stafford, P.L. (1998a) Lanthanide field tracers demonstrate enhanced transport of transuranic radionuclides by natural organic matter. Environmental Science & Technology, 32, 39013906.CrossRefGoogle Scholar
McCarthy, J.F., Czerwinski, K.R., Sanford, W.E., Jardine, P.M. and Marsh, J.D. (1998b) Mobilization of transuranic radionuclides from disposal trenches by natural organic matter. Journal of Contaminant Hydrology, 30, 4977.CrossRefGoogle Scholar
Meier, M., Namjesnik-Dejanovic, K., Maurice, P., Chin, Y.-P. and Aiken, G.R. (1999) Fractionation of aquatic natural organic matter upon sorption to goethite and kaolinite. Chemical Geology, 157, 275284.CrossRefGoogle Scholar
Mesuere, K. and Fish, W. (1992) Chromate and oxalate adsorption on goethite. 1. Calibration of surface complexation models. Environmental Science & Technology, 26, 23572364.CrossRefGoogle Scholar
Morgenstern, M., Klenze, R. and Kim, J.I. (2000) The formation of mixed-hydroxo complexes of Cm(III) and Am(III) with humic acid in the neutral pH range. Radiochimica Acta, 88, 716.CrossRefGoogle Scholar
Motellier, S., Ly, J., Gorgeon, L., Charles, Y., Hainos, D., Meier, P. and Page, J. (2003) Modelling of the ion-exchange properties and indirect determination of the interstitial water composition of an argillaceous rock. Application to the Callovo-Oxfordian low-water-content formation. Applied Geochemistry, 18, 1517–153.CrossRefGoogle Scholar
Murphy, E.M., Zachara, J.M., Smith, S.C., Phillips, J.L. and Wietsma, T.W. (1994) Interaction of hydrophobic organic compounds with mineral bound humic substances. Environmental Science & Technology, 28, 12911299.CrossRefGoogle ScholarPubMed
Murphy, R.J., Lenhart, J.J. and Honeyman, B.D. (1999) The sorption of thorium (IV) and uranium (VI) to hematite in the presence of natural organic matter. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 157, 4762.CrossRefGoogle Scholar
Nachtegaal, M. (2003) The Influence of Competing Sorbents on the Dynamic and Mechanisms of Metal Reactions in Natural Systems: A Multi-Scale Approach. PhD thesis, Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA, 205 pp.Google Scholar
Namjesnik-Dejanovic, K. and Maurice, P.A. (2000) Conformations and aggregate structures of sorbed natural organic matter on muscovite and hematite. Geochimica et Cosmochimica Acta, 65, 10471057.CrossRefGoogle Scholar
Namjesnik-Dejanovic, K., Maurice, P.A., Aiken, G.R., Cabaniss, S., Chin, Y.P. and Pullin, M.J. (2000) Adsorption and fractionation of a muck fulvic acid on kaolinite and goethite at pH 3.7, 6, and 8. Soil Science, 165, 545559.CrossRefGoogle Scholar
Nash, K.L. and Choppin, G.R. (1980) Interaction of humic and fulvic acids with Th(IV). Journal of Inorganic and Nuclear Chemistry, 42, 10451050.CrossRefGoogle Scholar
Nash, K.L., Fried, S., Friedman, A.M. and Sullivan, J.C. (1981) Redox behavior, complexing, and adsorption of hexavalent actinides by humic acid and selected clays. Stiring marine disposal of high-level radioactive waste. Environmental Science & Technology, 15, 834837.CrossRefGoogle Scholar
Nebbioso, A. and Piccolo, A. (2011) Basis of a humeomics science: Chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromolecules, 12, 11871199.CrossRefGoogle Scholar
Nebbioso, A. and Piccolo, A. (2012) Advances in humeomics: Enhanced structural identification of humic molecules after size fractionation of a soil humic acid. Analytica Chimica Acta, 720, 7790.CrossRefGoogle ScholarPubMed
Ochs, M., Cosovic, B. and Stumm, W. (1994) Coordinative and hydrophobic interaction of humic substances with hydrophilic Al2O3 and hydrophobic mercury surfaces. Geochimica et Cosmochimica Acta, 58, 639650.CrossRefGoogle Scholar
Ogoshi, T. and Chujo, Y. (2005) Synthesis of anionic polymer-silica hybrids by controlling pH in an aqueous solution. Journal of Materials Chemistry, 15, 315322.CrossRefGoogle Scholar
Osterberg, R., Mortensen, K. and Ikai, A. (1995) Direct observation of humic-acid clusters, a nonequilibrium system with a fractal structure. Naturwissenschaften, 82, 137139.CrossRefGoogle Scholar
Payne, T.E., Davis, J.A. and Waite, T.D. (1996) Uranium adsorption on ferrihydrite - effects of phosphate and humic acid. Radiochimica Acta, 74, 239243.CrossRefGoogle Scholar
Piccolo, A., Conte, P. and Cozzolino, A. (2000) Differences in high perfomance size exclusion chromatography between humic substances and macromolecular polymers. Pp. 111124.in: Humic Substances: Versatile Components of Plants, Soil and Water (E.A. Ghabbour, and G. Davies, editors). The Royal Society of Chemistry, Cambridge, UK.Google Scholar
Piccolo, A., Conte, P. and Cozzolino, A. (2001) Chromatographic and spectrophotometric properties of dissolved humic substances compared with macromolecular polymers. Soil Science, 166, 174185.CrossRefGoogle Scholar
Pinheiro, J.P., Mota, A.M., d’Oliveira, J.M.R. and Martinho, J.M.G. (1996) Dynamic properties of humic matter by dynamic light scattering and voltammetry. Analytica Chimica Acta, 329, 1524.CrossRefGoogle Scholar
Pitois, A., Abrahamsen, L.G., Ivanov, P.I. and Bryan, N.D. (2008) Humic acid sorption onto a quartz sand surface: a kinetic study and insight into fractionation. Journal of Colloid and Interface Science, 325, 93100.CrossRefGoogle ScholarPubMed
Plancque, G., Amekraz, B., Moulin, V., Toulhoat, P. and Moulin, C. (2001) Molecular structure of fulvic acids by electrospray with quadrupole time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 15, 827835.CrossRefGoogle ScholarPubMed
Plaschke, M., Romer, J., Klenze, R. and Kim, J.I. (1999) In situ AFM study of sorbed humic acid colloids at different pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 160, 269279.CrossRefGoogle Scholar
Plaschke, M., Rothe, J., Schafer, T., Denecke, M.A., Dardenne, K., Pompe, S. and Heise, K.H. (2002) Combined AFM and STXM in situ study of the influence of Eu(III) on the agglomeration of humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 197, 245256.CrossRefGoogle Scholar
Pourret, O., Davranche, M., Gruau, G. and Dia, A. (2007) Rare earth elements complexation with humic acid. Chemical Geology, 243, 128141.CrossRefGoogle Scholar
Rabung, T., Stumpf, T., Geckeis, H., Klenze, R. and Kim, J.I. (2000) Sorption of Am(III) and Eu(III) onto g-alumina: experiment and modelling. Radiochimica Acta, 88, 711716.CrossRefGoogle Scholar
Rabung, T., Pierret, M.C., Bauer, A., Geckeis, H., Bradbury, M.H. and Baeyens, B. (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochimica et Cosmochimica Acta, 69, 53935402.CrossRefGoogle Scholar
Reiller, P. (2005) Prognosticating the humic complexation for redox sensitive actinides through analogy, using the charge neutralisation model. Radiochimica Acta, 93, 4355.CrossRefGoogle Scholar
Reiller, P.E. and Buckau, G. (2012)Impacts of humic substances on the geochemical behaviour of radionuclides. In: Radionuclide Behaviour in the Natural Environment: Science, Implications and Lessons for the Nuclear Industry (C. Poinssot, and H. Geckeis, editors). Woodhead Publishing, Cambridge, UK.CrossRefGoogle Scholar
Reiller, P., Moulin, V., Casanova, F. and Dautel, C. (2002) Retention behaviour of humic substances onto mineral surfaces and consequences upon thorium (IV) mobility: case of iron oxides. Applied Geochemistry, 17, 15511562.CrossRefGoogle Scholar
Reiller, P., Moulin, V., Casanova, F. and Dautel, C. (2003) On the study of Th(IV)-humic acid interactions by competition sorption studies with silica and determination of global interaction constants. Radiochimica Acta, 91, 513524.CrossRefGoogle Scholar
Reiller, P., Casanova, F. and Moulin, V. (2005) Influence of addition order and contact time on thorium(IV) retention by hematite in the presence of humic acids. Environmental Science & Technology, 39, 16411648.CrossRefGoogle ScholarPubMed
Reiller, P., Amekraz, B. and Moulin, C. (2006) Sorption of Aldrich humic acid onto hematite: Insights into fractionation phenomena by electrospray ionization with quadrupole time-of-flight mass spectrometry. Environmental Science & Technology, 40, 22352241.CrossRefGoogle ScholarPubMed
Reiller, P.E., Evans, N.D.M. and Szabo’ , G. (2008) Complexation parameters for the actinides(IV)- humic acid system: a search for consistency and application to laboratory and field observations. Radiochimica Acta, 96, 345358.CrossRefGoogle Scholar
Reiller, P.E., Marang, L., Jouvin, D. and Benedetti, M.F. (2011a) Uranium (VI) binding to humic substances: speciation, estimation of competition, and applica-tion to independant data. Pp. 565–72.in: The New Uranium Mining Boom. Challenge and Lessons Learned (B. Merkel, and M. Schipek, editors). Springer-Verlag, Berlin.Google Scholar
Reiller, P.E., Brevet, J., Nebbioso, A. and Piccolo, A. (2011b) Europium(III) complexed by HPSEC sizefractions of a vertisol humic acid: small differences evidenced by time-resolved luminescence spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78, 11731179.CrossRefGoogle ScholarPubMed
Rice, J.A., Tomba’cz, E. and Malekani, K. (1999) Application of light and X-ray scattering to characterize the fractal properties of soil organic matter. Geoderma, 88, 251264.CrossRefGoogle Scholar
Robertson, A.P. (1996) Goethite/humic acid interactions and their effects on copper(II) binding, Unpublished PhD thesis, Stanford University, Palo Alto, California, USA, 215 pp.Google Scholar
Robertson, A.P. and Leckie, J.O. (1994) Humic acid/ goethite interactions and their effect on copper binding. Pp. 487492.in: Humic Substances in the Global Environment and Implication on Human Health (N. Senesi, and T.M. Miano, editors). Elsevier, Amsterdam.Google Scholar
Romanchuk, A.Y., Kalmykov, S.N. and Aliev, R.A. (2011) Plutonium sorption onto hematite colloids at femto- and nanomolar concentrations. Radiochimica Acta, 99, 137144.CrossRefGoogle Scholar
Sachs, S., Brendler, V. and Geipel, G. (2007) Uranium(VI) complexation by humic acid under neutral pH conditions studied by laser-induced fluorescence spectroscopy. Radiochimica Acta, 95, 103110.CrossRefGoogle Scholar
Sanchez, A.L., Murray, J.M. and Sibley, T.H. (1985) The adsorption of plutonium IV and V on goethite. Geochimica et Cosmochimica Acta, 49, 22972307.CrossRefGoogle Scholar
Schindler, P.W. (1990) Co-adsorption of metal ions and organic ligand: formation of ternary surface complexes. Pp. 281307.in: Mineral-Water Interface Geochemistry (M.F. Hochella, and A.F. White, editors). Reviews in Mineralogy, 23. Mineralogical Society of America, Washington DC.Google Scholar
Schlautman, M.A. and Morgan, J.J. (1994) Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles: Influence of solution chemistry. Geochimica et Cosmochimica Acta, 58, 42934303.CrossRefGoogle Scholar
Schnitzer, M. and Skinner, S.I.M. (1966) Organometallic interactions in soils: 5. Stability constants of Cu++- Fe++- and Zn++-fulvic acid complexes. Soil Science, 102, 361365.CrossRefGoogle Scholar
Schnitzer, M. and Skinner, S.I.M. (1967) Organometallic interactions in soils: 7. Stability constants of Pb++-, Ni++-, Mn++-, Co++-, Ca++-, and Mg++- fulvic acid complexes. Soil Science, 103, 247252.CrossRefGoogle Scholar
Schulthess, C.P. and McCarthy, J.F. (1990) Competitive adsorption of aqueous carbonic and acetic acids by an aluminium oxide. Soil Science Society of America Journal, 54, 688694.CrossRefGoogle Scholar
Seibert, A., Mansel, A., Marquardt, C.M., Keller, H., Kratz, J.V. and Trautmann, N. (2001) Complexation behaviour of neptunium with humic acid. Radiochimica Acta, 89, 505510.CrossRefGoogle Scholar
Senesi, N., Rizzi, F.R., Dellino, P. and Acquafredda, P. (1997) Fractal humic acids in aqueous suspensions at various concentrations, ionic strengths, and pH values. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 127, 5768.CrossRefGoogle Scholar
Simpson, A.J., Kingery, W.L. and Hatcher, P.G. (2003) The identification of plant derived structures in humic materials using three-dimensional NMR spectroscopy. Environmental Science & Technology, 37, 337342.CrossRefGoogle ScholarPubMed
Sonke, J.E. (2006) Lanthanide-humic substances complexation. II. Calibration of humic ion-binding model V. Environmental Science & Technology, 40, 74817487.CrossRefGoogle ScholarPubMed
Stevenson, F.J. (1982) Humus Chemistry: Genesis, Composition, Reactions. Wiley, New York.Google Scholar
Stockdale, A., Bryan, N.D. and Lofts, S. (2011) Estimation of Model VII humic binding constants for Pd2+, Sn2+, U4+, NpO2 2+, Pu4+ and PuO2 2+. Journal of Environmental Monitoring, 13, 29462950.CrossRefGoogle ScholarPubMed
Szabo’, G., Guczi, J., Reiller, P.E., Miyajima, T. and Bulman, R.A. (2010) Effect of ionic strength on complexation of Pu(IV) with humic acid. Radiochimica Acta, 98, 1318.Google Scholar
Szekeres, M., Tomba’cz, E., Ferencz, K. and Dekany, I. (1998) Adsorption of salicylate on alumina surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 141, 319325.CrossRefGoogle Scholar
Takahashi, Y., Minai, Y., Ambe, S., Makide, Y. and Ambe, F. (1999) Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique - a comparison with dissolved aluminum. Geochimica et Cosmochimica Acta, 63, 815836.CrossRefGoogle Scholar
Tan, X.L., Wang, X.K., Geckeis, H. and Rabung, T. (2008) Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEMEDS, XPS, TRLFS, and batch techniques. Environmental Science & Technology, 42, 65326537.CrossRefGoogle ScholarPubMed
Tertre, E., Beaucaire, C., Juery, A. and Ly, J. (2010) Methodology to obtain exchange properties of the calcite surface-Application to major and trace elements: Ca(II), HCO3 -, and Zn(II). Journal of Colloid and Interface Science, 347, 120126.CrossRefGoogle Scholar
These, A., Winkler, M., Thomas, C. and Reemtsma, T. (2004) Determination of molecular formulas and structural regularities of low molecular weight fulvic acids by size-exclusion chromatography with elec- trospray ionization quadrupole time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 18, 17771786.CrossRefGoogle Scholar
Tipping, E. (2002) Cation Binding by Humic Substances. Cambridge University Press, Cambridge, UK, 434 pp.CrossRefGoogle Scholar
Tipping, E. (1981a) Adsorption by goethite (a-FeOOH) of humic substances from three different lakes. Chemical Geology, 33, 8189.CrossRefGoogle Scholar
Tipping, E. (1981b) The adsorption of aquatic humic substances by iron oxides. Geochimica et Cosmochimica Acta, 45, 191199.CrossRefGoogle Scholar
Tipping, E., Griffith, J.R. and Hilton, J. (1983) The effect of adsorbed humic substances on the uptake of copper(II) by goethite. Croatica Chemica Acta, 56, 613621.Google Scholar
Turner, D.R., Pabalan, R.T. and Bertetti, F.P. (1998) Neptunium(V) sorption on montmorillonite: an experimental and surface complexation modeling study. Clays and Clay Minerals, 46, 256269.CrossRefGoogle Scholar
van de Weerd, H., van Riemsdijk, W.H. and Leijnse, A. (1999) Modelling the dynamic adsorption-desorption of NOM mixture: Effects of physical and chemical heterogeneity. Environmental Science & Technology, 33, 16751681.CrossRefGoogle Scholar
van den Hoop, M.A.G.T., van Leeuwen, H.P. and Cleven, R.F.M.J. (1990) Study of the polyelectrolyte properties of humic acids by conductimetric titration. Analytica Chimica Acta, 232, 141148.CrossRefGoogle Scholar
van Dijk, H. (1971) Cation binding of humic acids. Geoderma, 5, 5367.CrossRefGoogle Scholar
Vermeer, A.W.P. (1996) Interaction between humic acid and hematite and their effects upon metal speciation. PhD thesis, Landbouwuniversiteit Wageningen, Wageningen, The Netherlands, 199 pp.Google Scholar
Vermeer, A.W.P. and Koopal, L.K. (1998) Adsorption of humic acids to mineral particles. 2. Polydispersity effects with polyelectrolyte adsorption. Langmuir, 14, 42104216.CrossRefGoogle Scholar
Vermeer, A.W.P., van Riemsdijk, W.H. and Koopal, L.K. (1998) Adsorption of humic acids to mineral particles. 1. Specific and electrostatic interactions. Langmuir, 14, 28102819.CrossRefGoogle Scholar
Vermeer, A.W.P., McCulloch, J.K., van Riemsdijk, W.H. and Koopal, L.K. (1999) Metal ion adsorption to complexes of humic acid and metal oxides: deviation from the additivity rule. Environmental Science & Technology, 33, 38923897.CrossRefGoogle Scholar
Waite, T.D., Davis, J.A., Payne, T.E., Waychunas, G.A. and Xu, N. (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochimica et Cosmochimica Acta, 58, 54655478.CrossRefGoogle Scholar
Wang, X.K., Rabung, T., Geckeis, H., Panak, P.J., Klenze, R. and Fangha‥nel, T. (2004) Effect of humic acid on the sorption of Cm(III) onto g-Al2O3 studied by the time-resolved laser fluorescence spectroscopy. Radiochimica Acta, 92, 691695.CrossRefGoogle Scholar
Weng, L.P., van Riemsdijk, W.H., Koopal, L.K. and Hiemstra, T. (2006) Adsorption of humic substances on goethite: comparison between humic acids and fulvic acids. Environmental Science & Technology, 40, 74947500.CrossRefGoogle ScholarPubMed
Weng, L.P., van Riemsdijk, W.H. and Hiemstra, T. (2007) Adsorption of humic acids onto goethite: effects of molar mass, pH and ionic strength. Journal of Colloid and Interface Science, 314, 107118.CrossRefGoogle ScholarPubMed
Wershaw, R.L. (1986) A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems. Journal of Contaminant Hydrology, 1, 29.CrossRefGoogle Scholar
Wershaw, R.L. (1989) Application of a membrane model to the sorptive interactions of humic substances. Environmental Health Perspectives, 83, 191203.CrossRefGoogle ScholarPubMed
Wershaw, R.L. (1993) Model for humus. Environmental Science & Technology, 27, 814816.CrossRefGoogle Scholar
Wershaw, R.L. (1999) Molecular aggregation of humic substances. Soil Science, 164, 803813.CrossRefGoogle Scholar
Wershaw, R.L. (2000) The study of humic substances - in search of a paradigm. Pp. 1–7.in: Humic Substances. Versatile Components of Plants, Soils and Water (E.A. Ghabbour, and G. Davies, editors). The Royal Society of Chemistry, Cambridge, UK.Google Scholar
Wershaw, R.L., Leenheer, J.A., Sperline, R.P., Song, Y.A., Noll, L.A., Melvin, R.L. and Rigatti, G.P. (1995) Mechanism of formation of humus coatings on mineral surfaces. I. Evidence for multidentate binding of organic-acids from compost leachate on alumina. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 96, 93104.CrossRefGoogle Scholar
Yoon, T.H., Johnson, S.B. and Brown, G.E. (2004) Adsorption of Suwannee River fulvic acid on aluminum oxyhydroxide surfaces: an in situ ATRFTIR study. Langmuir, 20, 56555658.CrossRefGoogle Scholar
Zachara, J.M., Resch, C.T. and Smith, S.C. (1994) Influence of humic substances on Co2+ sorption by a subsurface mineral separate and its mineralogic components. Geochimica et Cosmochimica Acta, 58, 553566.CrossRefGoogle Scholar
Zeh, P., Czerwinski, K.R. and Kim, J.I. (1997) Speciation of uranium in Gorleben groundwaters. Radiochimica Acta, 76, 3744.CrossRefGoogle Scholar
Zeh, P., Kim, J.I., Marquardt, C.M. and Artinger, R. (1999) The reduction of Np(V) in groundwater rich in humic substances. Radiochimica Acta, 87, 2328.CrossRefGoogle Scholar
Zhao, P.H., Zavarin, M., Leif, R.N., Powell, B.A., Singleton, M.J., Lindvall, R.E. and Kersting, A.B. (2011) Mobilization of actinides by dissolved organic compounds at the Nevada Test Site. Applied Geochemistry, 26, 308318.CrossRefGoogle Scholar