Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-08T19:09:22.490Z Has data issue: false hasContentIssue false

Mn-rich graftonite, ferrisicklerite, staněkite and Mn-rich vivianite in a granitic pegmatite at Soè Valley, central Alps, Italy

Published online by Cambridge University Press:  05 July 2018

A. Guastoni
Affiliation:
Dipartimento di Geoscienze, Università degli Studi di Padova, Via Giotto 1, I-35137 Padova, Italy Centro di Ateneo per i Musei, Università di Padova, Via Orto Botanico 15, I-35122 Padova, Italy
F. Nestola*
Affiliation:
Dipartimento di Geoscienze, Università degli Studi di Padova, Via Giotto 1, I-35137 Padova, Italy di Geoscienze e Georisorse, CNR Sezione di Padova, Via Giotto 1, I-35137 Padova, Italy
G. Mazzoleni
Affiliation:
Stazione Valchiavenna per lo Studio dell’Ambiente Alpino, Via dei Cappuccini, I-23022 Chiavenna, Italy
P. Vignola
Affiliation:
CNR-Istituto per la dinamica dei processi ambientali, Via Mario Bianco 9, I-20131 Milano, Italy

Abstract

Mn-rich graftonite, (Ca,Mn2+)(Fe2+,Mn2+)2(PO4)2, ferrisicklerite, Li1–x(Fe3+,Mn2+)PO4, manganoan apatite, (Ca,Mn2+,Fe2+Mg)(PO4)3Cl, staně kite, Fe3+Mn2+O(PO4) and Mn-rich vivianite, (Fe2+)3(PO4)2·8H2O, occurring in a granitic pegmatite at Soè Valley (central Alps, Italy) were characterized by powder and single-crystal X-ray diffraction (XRD) and electron microprobe analyses. Geochemically, the Mn-rich graftonite phases are poorly evolved Fe/Mn-phosphates of rare-earth elements-lithium (REE-Li) granitic pegmatites. The assemblage Mn-rich graftonite + ferrisicklerite + staněkite has rarely beendocumen ted in pegmatites. Inthe Soè Valley pegmatite, ferrisicklerite forms exsolution lamellae with Mn-rich graftonite associated with manganoan apatite and staněkite. Graftonite is associated with Mn-rich vivianite. Powder and single-crystal XRD data indicate that the unit-cell volume of graftonite increases as a function of Mn2+ content. Staněkite shows a distinctly smaller unit-cell volume with respect to previously reported staněkites, probably due to reduced Mn2+. Vivianite with significant Mn2+ has a unit-cell volume similar to nearly Mn-free vivianite. The formation of Mn-rich graftonite and manganoan apatite is related to destabilization of Mn-rich almandine and biotite during pegmatite formation. Ferrisicklerite forms exsolution lamellae along the 010 cleavage planes of Mn-rich graftonite, whereas staněkite forms by alterationof ferrisicklerite and Mn-rich vivianite due to circulation of late-stage hydrothermal fluids.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, A. (1976) The crystal structure of ferrisicklerite Li<1(Fe3+, Mn2+)PO4 . Acta Crystallographica, B32, 2761–2764.Google Scholar
Blattner, P. (1965) Ein anatektisches Gneissmassiv zwischen Valle Bodengo und Valle di Livo (Prov. Sondrio und Como). Schweizerische Mineralogische und Petrographische Mitteilungen, 45, 973–1071.Google Scholar
Calvo, C. (1968) The crystal structure of graftonite. American Mineralogist, 53, 742–750.Google Scholar
Černý, P. (1991) Fertile granites of Precambrian rareelement pegmatite fields: is geochemistry controlled by tectonic setting or source lithologies? Precambrian Research, 51, 429–468.CrossRefGoogle Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 2005–2026.CrossRefGoogle Scholar
Černý, P., Selway, J.B., Ercit, S.T., Breaks, F.W., Anderson, A.J. and Anderson, S.D. (1998) Mn–rich graftonite in granitic pegmatites of the Superior Province: a study in contrast. The Canadian Mineralogist, 36, 367–376.Google Scholar
Fejdi, P., Poullen, J.F. and Gasperin, M. (1980) Affinement de la structure de la vivianite Fe3(PO4)2(H2O)8 . Bulletin de Minéralogie, 103, 135–138.CrossRefGoogle Scholar
Fontan, F., Huvelin, P., Orliac, M. and Permingeat, F. (1976) La ferrisicklérite des pegmatites de Sidi Bou Othmane (Jebilet, Maroc) et le groupe des minéraux àstructure de triphylite. Bulletin de la Société Franc¸aise de Minéralogie et de Cristallografie, 99, 274–286.Google Scholar
Fransolet, A.M., Keller, P. and Fontan, F. (1986) The phosphate mineral associations of the Tsaobismund pegmatite, Namibia. Contributions to Mineralogy and Petrology, 92, 502–517.CrossRefGoogle Scholar
Guastoni, A. and Demartin, F. (2003) Ferrotapiolite della valle Soè. Atti della SocietàItaliana di Scienze Naturali, 144, 145–150.Google Scholar
Guastoni, A. and Grammatica, P. (2001) Silicati di berillio della valle Soé. Rivista Mineralogica Italiana, 25, 105–107.Google Scholar
Guastoni, A. and Mazzoli, C. (2007) Age determination by m–PIXE analysis of cheralite–(Ce) from emeraldbearing pegmatites of Vigezzo valley (Western Alps, Italy). Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 153, 297–299.Google Scholar
Hänny, R. (1972) Das Migmatitgebiet der valle Bodengo (östlischen Lepontin). Beitrage Geologische Karte Schweiz, 134, 67.pp.Google Scholar
Hänny, R., Grauert, B. and Soptrajanova, G. (1975) Paleozoic migmatites affected by high–grade tertiary metamorphism in the Central Alps (Valle Bodengo, Italy). Contributions to Mineralogy and Petrology, 51, 173–196.CrossRefGoogle Scholar
Keller, P., Fontan, F., Velasco Roldan, F. and Melgarejo Draper, J.C. (1997) Staněkite, Fe3+(Mn, Fe2+, Mg)(PO4)O: a new phosphate mineral inpegm atites at Karibib (Namibia) and French Pyrénées (France). European Journal of Mineralogy, 9, 475–482.CrossRefGoogle Scholar
Keller, P., Lissner, F. and Schleid, T. (2006) The crystal structure of staněkite, (Fe3+, Mn2+, Fe2+, Mg)2PO4O, from Okatjimukuju, Karibib (Namibia) and its relationship to the polymorphs of syntethic Fe2PO4O. European Journal of Mineralogy, 18, 113–118.CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B. (2003) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report, LAUR, 86–748.Google Scholar
London, D., Wolf, M.B. and Morgan, G.B. (1995) Silicate–phosphate equilibria in peraluminous granites and pegmatites: monitors and buffers of P2O5 in melt. Geological Society of America. Abstract Programs, 27, 411.Google Scholar
London, D., Wolf, M.B., Morgan, G.B. and Gallego Garrido, M. (1999) Experimental silicate–phosphate equilibria in peraluminous granitic magmas, with a case study of the Albuquerque batholith at Tres Arroyos, Badajoz, Spain. Journal of Petrology, 40, 215–240.CrossRefGoogle Scholar
Mason, B. (1941) Minerals of the Varuträsk pegmatite. XXIII. Some iron–manganese phosphate minerals and their alteration products, with special reference to material from Varuträsk. Geologiska Füreningens i Stokolm Förhandlgar, 63, 117–175.Google Scholar
Moore, P.B. (1973) Pegmatite phosphates: descriptive mineralogy and crystal chemistry. The Mineralogical Record, 4, 103–130.Google Scholar
Moticska, P. (1970) Petrographie und Strukturanalyse des westlichen Bergeller Massivs. Ph.D thesis ETH Zurich. Schweizerische Mineralogische und Petrographische Mitteilungen, 50, 355–443.Google Scholar
Roda, E., Pesquera, A., Fontan, F. and Keller, P. (2004) Phosphate mineral associations in the Can˜ada pegmatite (Salamanca, Spain): paragenetic relationships, chemical compositions and implications for pegmatite evolution. American Mineralogist, 89, 110–125.CrossRefGoogle Scholar
Schärer, U., Cosca, M., Steck, A. and Hunziker, J. (1996) Termination of major ductile strike–slip shear and differential cooling along the Insubric line (Central Alps): U–Pb, Rb–Sr and 40Ar/39Ar ages of cross–cutting pegmatites. Earth and Planetary Science Letters, 142, 331–351.CrossRefGoogle Scholar
Schmid, S.M., Berger, A., Davidson, C., Gierè, R., Hermann, J., Nievergelt, P., Puschnig, A.R. and Rosenberg, C. (1996) The Bergell Pluton (southern Switzerland, northern Italy): overview accompanying a geological–tectonic map of the intrusion and surrounding country rocks. Schweizerische Mineralogische und Petrographische Mitteilungen, 76, 329–355.Google Scholar
Smeds, S.A., Uher, P., Černý, P., Wise, M., Gustafsson, L. and Penner, P. (1998) Mn–rich graftonite in Sweden: primary phases, products of exsolution and distribution in zoned populations of granitic pegmatites. The Canadian Mineralogist, 36, 377–394.Google Scholar
Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210–213.CrossRefGoogle Scholar
Wenk, H.R. (1992) Geologischer Atlas der Schweiz 1:25.000, Blatt 1296 Sciora. Bern.Google Scholar
Winter, J.D. (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall, New Jersey, USA.Google Scholar