Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T17:47:34.976Z Has data issue: false hasContentIssue false

Mn-Mg disordering in cummingtonite: a high-temperature neutron powder diffraction study

Published online by Cambridge University Press:  05 July 2018

J. J. Reece*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ
S. A. T. Redfern
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ
M. D. Welch
Affiliation:
Department of Mineralogy, The Natural History Museum, Cromwell Road, London, SW7 5BD
C. M. B. Henderson
Affiliation:
Department of Earth Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

Abstract

The crystal structure of a manganoan cummingtonite, composition [M4](Na0.13Ca0.41Mg0.46Mn1.00) [M1,2,3](Mg4.87Mn0.13)(Si8O22)(OH)2, (Z = 2), a = 9.5539(2) Å, b = 18.0293(3) Å, c = 5.2999(1) Å, β = 102.614(2)° from Talcville, New York, has been refined at high temperature using in situ neutron powder diffraction. The P21/m to C2/m phase transition, observed as spontaneous strains +ε1 = −ε2, occurs at ˜107°C. Long-range disordering between Mg2+ and Mn2+ on the M(4) and M(2) sites occurs above 550°C. Mn2+ occupies the M(4) and M(2) sites preferring M(4) with a site-preference energy of 24.6±1.5 kJ mol−1. Disordering induces an increase in XMnM2 and decrease in XMnM4 at elevated temperatures. Upon cooling, the ordered states of cation occupancy are ‘frozen in’ and strains in lattice parameters are maintained, suggesting that re-equilibration during cooling has not taken place.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bown, M.G. (1966) A new amphibole polymorph in intergrowth with tremolite: Clino-anthophylite? Amer. Mineral., 51, 259–60.Google Scholar
Burns, R.G. and Strens, R.G.J. (1966) Infrared study of the hydroxyl bands in clinoamphiboles. Science, 153, 890–2.CrossRefGoogle ScholarPubMed
Ghose, S. (1961) The crystal structure of cummingtonite. Acta Crystallogr., 14, 622–7.CrossRefGoogle Scholar
Ghose, S. and Ganguly, J. (1982) Mg-Fe order – disorder in ferromagnesian silicates. Pp. 199 in Advances in Physical Geochemistry 2, (Saxena, S.K., editor). Springer-Verlag, New York.CrossRefGoogle Scholar
Ghose, S. and Hellner, E. (1959) The crystal structure of Grunerite and observations on the Mg-Fe distribution. J. Geol., 67, 691701.CrossRefGoogle Scholar
Ghose, S. and Weidner, J.R. (1972) Mg2+-Fe2+ orderdisorder in cummingtonite, (Mg,Fe)7Si8O22(OH)2: A new geothermometer. Earth Planet. Sci. Lett., 16, 346–54.CrossRefGoogle Scholar
Ghose, S. and Yang, H. (1989) Mn-Mg distribution in a C2/m manganoan cummingtonite: Crystal-chemistry considerations. Amer. Mineral., 74, 1091–6.Google Scholar
Hawthorne, F.C. (1983) The crystal chemistry of the amphiboles. Canad. Mineral., 21, 173480.Google Scholar
Hawthorne, F.C. and Grundy, H.D. (1977) The crystal structure and site-chemistry of a zincian tirodite by least squares refinement of X-ray and Mössbauer data. Canad. Mineral., 15, 309–20.Google Scholar
Hawthorne, F.C., Della Ventura, G. and Robert, J.-L. (1996) Short-range order of (Na,K) and Al in tremolite: An infrared study. Amer. Mineral., 81, 782–4.Google Scholar
Henderson, C.M.B., Knight, K.S., Redfern, S.A.T. and Wood, B.J. (1996) Temperature dependence of octahedral cation site exchange in olivine determined by in situ, time-of-flight, neutron powder difffraction. Science, 271, 1713–5.CrossRefGoogle Scholar
Hirschmann, M., Evans, B.W. and Yang, H. (1994) Composition and temperature dependence of Fe-Mg ordering in cummingtonite-grunerite as determined by X-ray diffraction. Amer. Mineral., 79, 862–77.Google Scholar
Hull, S., Smith, R.I., David, W.I.F., Hannon, A.C., Mayers, J. and Cywinski, R. (1992) The POLARIS powder diffractometer at ISIS. Physica B, 180, 1000–2.CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B. (1994) GSAS general structure analysis system. LANSCE MSH805, Los Alamos National Laboratory.Google Scholar
Leake, B.E., Wooley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthotne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youzhi, G. (1997) Nomenclature of the amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and New Mineral Names. Mineral. Mag., 61, 295321.CrossRefGoogle Scholar
Maresch, W.V. and Czank, M. (1988) Crystal chemistry, growth kinetics and phase relationships of structurally disordered (Mn2+,Mg)-amphiboles. Forts. Mineral., 66, 69121.Google Scholar
Mueller, R.F. (1970) Two-step mechanism for orderdisorder kinetics in silicates. Amer. Mineral., 55, 1210–8.Google Scholar
Papike, J.J., Ross, M. and Clark, J.R. (1969) Crystal-chemical characterization of clinoamphiboles based on five new structure refinements. Mineralogical Society of America Special Paper 2, 117–36.Google Scholar
Prewitt, C.T., Papike, J.J. and Ross, M. (1970) Cummingtonite: a reversible, nonquenchable transition from P21/m to C2/m symmetry. Earth Planet. Sci. Lett., 8, 448–50.CrossRefGoogle Scholar
Redfern, S.A.T., Henderson, C.M.B., Wood, B.J., Harrison, R. J. and Knight, K.S. (1996) Determination of olivine cooling rates from metal cation ordering. Nature, 381, 407–9.CrossRefGoogle Scholar
Redfern, S.A.T., Harrison, R.J., O’Neill, H.St.C. and Wood, D.R.R. (1999) Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600°C from in-situ neutron diffraction. Amer. Mineral., 84, 299310.CrossRefGoogle Scholar
Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 2, 6571.CrossRefGoogle Scholar
Ross, M., Papike, J.J., Shaw, K.W. and Weiblen, P.W. (1968) Exsolution in clinoamphiboles. Science, 159, 1099–102.CrossRefGoogle ScholarPubMed
Ross, M., Papike, J.J. and Shaw, K.W. (1969) Exsolution textures in amphiboles as indicators of subsolidus thermal histories. Mineralogical Society of America, Special paper, 2, 275–99.Google Scholar
Salje, E.K.H. (1990) Phase Transitions in Ferroelastic and Co-elastic Crystals. Cambridge University Press, Cambridge.Google Scholar
Sears, V.F. (1992) Neutron scattering lengths and cross sections. Neutron News, 3, 2638.CrossRefGoogle Scholar
Sokolova, E.J., Kabalov, Yu.K., McCammon, C., Schneider, J. and Konev, A.A. (2000) Cation partitioning in an unusual strontian potassicrichterite from Siberia: Rietveld structure refinement and Mössbauer spectroscopy. Mineral. Mag., 64, 1923.CrossRefGoogle Scholar
Sueno, S., Papike, J.J., Prewitt, C.T. and Brown, G.E. (1972) Crystal structure of high cummingtonite. J. Geophys. Res., 77, 5767–77.CrossRefGoogle Scholar
Whittaker, E.J.W. (1949) The structure of Bolivian Crocidolite. Acta Crystallogr., 2, 312–7.CrossRefGoogle Scholar
Yang, H. and Hirschmann, M.M. (1995) Crystal structure of P21/m ferromagnesain amphibole and the role of cation ordering and composition in the P21/mC2/m transition in cummingtonite. Amer. Mineral., 80, 916–22.CrossRefGoogle Scholar
Yang, H. and Smyth, J.R. (1996) Crystal structure of a P21/m ferromagnesian cummingtonite at 140 K. Amer. Mineral., 81, 363–8.CrossRefGoogle Scholar