Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T03:58:21.579Z Has data issue: false hasContentIssue false

The missing sulphur in mattheddleite, sulphur analysis of sulphates, and paragenetic relations at Leadhills, Scotland

Published online by Cambridge University Press:  05 July 2018

E. J. Essene*
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor MI 48109-1063, USA
C. E. Henderson
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor MI 48109-1063, USA
A. Livingstone
Affiliation:
6, St. Ronan's Terrace, Innerleithen, Peeblesshire EH44 6RB, UK
*

Abstract

Published electron microprobe analyses of mattheddleite, a lead sulpho-silicate apatite from Leadhills, Scotland, have 9–13% IV site deficiencies. However, galena was used as a standard for S, which suggested that low S resulted from a shift in the S-Kα peak. Wavelength scans with a PET crystal show that the S-Kα peak is shifted down by 0.0026 Å for sulphates relative to sulphides. Quantitative analyses show a ∼30% increase of S in mattheddleite using a celestite standard, which fills the IV site, but with Si > S, on average Pb5S1.2Si1.8O11.7Cl0.6(OH)0.4. Direct analysis of oxygen with the electron microprobe implies that the charge imbalance engendered from the inequality of Si and S is compensated with substitution of a vacancy (□), as in Pb5S1.2Si1.8[O11.70.3] [Cl0.6(OH)0.4] or Pb5S1.2Si1.8[O11.7(Cl, OH)0.73]. [Cl,OH)0.70.3]. Calculation of OH as l–C1 suggests the presence of both OH- and Cl-dominant mattheddleite at Leadhills, but direct analysis of H is needed to confirm the dominance of OH in the channel site. Wavelength-dispersive analyses of S in apatite and other sulphates must be undertaken with sulphate standards: use of sulphide standards yields a negative error on the order of 10–20% in the resultant S concentration. Reactions of mattheddleite with other Pb minerals at Leadhills show that their stability depends on fluid composition as well as pressure and temperature. An X-ray map of Cl shows complex zoning between Cl-poor and Cl-rich mattheddleite, recording rapid changes in the fluid chemistry during late-stage hydrothermal processes at Leadhills.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul-Samad, F.A., Thomas, J.H., Williams, P.A. and Symes, R.F. (1982) Chemistry of formation of lanarkite, Pb2OSO4 . Mineralogical Magazine, 46, 499501.CrossRefGoogle Scholar
Afifi, A.M. and Essene, E.J. (1988) Minfile: a microcomputer program for storage and manipulation of chemical data on minerals. American Mineralogist, 73, 446448.Google Scholar
Afifi, A.M., Kelly, W.C. and Essene, E.J. (1988a) The stability and phase relations of tellurides. Part I. Thermochemical data and calculated equilibria. Economic Geology, 83, 377394.CrossRefGoogle Scholar
Afifi, A.M., Kelly, W.C. and Essene, E.J. (1988i) The stability and phase relations of tellurides. Part II. Applications to telluride-bearing ore deposits. Economic Geology, 83, 394404.Google Scholar
Austrheim, H. and Griffin, W.L. (1985) Shear deformation and eclogite formation within granulite-facies anorthosites of the Bergen Arcs, Western Norway. Chemical Geology, 50, 267281.CrossRefGoogle Scholar
Barth, A.P. and Dorais, M.J. (2000) Magmatic anhydrite in granitic rocks: first occurrence and potential petrologic consequences. American Mineralogist, 85, 430435.CrossRefGoogle Scholar
Boucher, M.L. and Peacor, D.R. (1968) The crystal structure of alamosite, PbSiO3 . Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 127, 99111.Google Scholar
Boundy, T.M., Donohue, C.L., Essene, E.J., Mezger, K. and Austrheim, H. (2002) Discovery of eclogite-facies carbonate rocks from the Lindås Nappe, Western Norway. Journal of Metamorphic Geology, 20, 649667.CrossRefGoogle Scholar
Brown, R. (1919) The mines and minerals of Leadhills. Transactions and Journal of Proceedings of the Dumfriesshire and Galloway Natural History & Antiquarian Society, 6, 124137.Google Scholar
Carroll, M.R. and Rutherford, M.J. (1988) Sulfur speciation in hydrous experimental glasses of varying oxidation state: results from measured wavelength shifts of sulfur X-rays. American Mineralogist, 73, 845849.Google Scholar
Cavarretta, G., Mottana, A. and Tecce, F. (1981) Cesanite, Ca2Na3[(OH)(SO4)3], a sulphate isotypic to apatite from the Cesano geothermal field (Latium, Italy). Mineralogical Magazine, 44, 269273.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Medici, L. (2006) Clinohydroxylapatite: a new apatite-group mineral from northwestern Ontario (Canada), and new data on the extent of Na-S substitution in natural apatites. European Journal of Mineralogy, 18, 105112.CrossRefGoogle Scholar
Connolly, J.W.D. and Haughton, D.R. (1972) The valence of sulfur in glass of basaltic composition formed under conditions of low oxidation potential. American Mineralogist, 57, 15151519.Google Scholar
Coolen, J.J.M.M.M. (1980) Chemical petrology of the Furua granulite complex, southern Tanzania. GUA Papers of Geology, 1, 13, 258 pp.Google Scholar
Cooper, M.P. and Stanley, C.J. (1990) Minerals from the English Lake District, Caldbeck Fells. Natural History Museum Publications, London, 160 pp.Google Scholar
Core, D.P., Essene, E.J., Kesler, S.E. and Luhr, J.F. (2006) Thermodynamic properties of sulfatian apatite: constraints on the behavior of sulfur in calc-alkaline igneous rocks. American Mineralogist, (submitted).Google Scholar
Derriche, Z. and Perrot, P. (1976) Thermodynamic study of the solid and liquid phases in the lead(II) oxide-lead(II) sulfate system. Revue de Chimie Minerale, 13, 310323.Google Scholar
Deyell, C.L. and Dipple, G.M. (2005) Equilibrium mineral-fluid calculations and their application to the solid solution between alunite and natroalunite in the El Indio-Pascua belt of Chile and Argentina. Chemical Geology, 215, 219234.CrossRefGoogle Scholar
Deyell, C.L., Rye, R.O., Landis, G.P. and Bissig, T. (2005) Alunite and the role of magmatic fluids in the Tambo high-sulfidation deposit, El Indio-Pascua belt, Chile. Chemical Geology, 215, 185218.CrossRefGoogle Scholar
Dong, Z.L. and White, T.J. (2004a) Calcium-lead fluoro-vanadinite apatites. I. Disequilibrium structures. Ada Crystallographica, B60, 138145.Google Scholar
Dong, Z.L. and White, T.J. (20046) Calcium-lead fluoro-vanadinite apatites. II. Equilibrium structures. Acta Crystallographica, B60, 146154.Google Scholar
Drouet, C. and Navrotsky, A. (2003) Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites. Geochimica et Cosmochimica Acta, 67, 20632076.CrossRefGoogle Scholar
Effenberger, H. and Pertlik, F. (1997) Die Kristallstruktur des Finnemanits, PbsCl(AsO3)3, mit einem Vergleich zum Strukturtyp des Chlorapatits, Ca5Cl(PO4)3 . Tschermaks Mineralogische und Petrographische Mitteilungen, 26, 95107.Google Scholar
Essene, E.J. (1989) The current status of thermobaro-metry in metamorphic rocks. Pp. 144 in: Evolution of Metamorphic Belts (Daly, S.R., Cliff, R. and Yardley, B.W.D., editors). Special Publication, 43, Geological Society, London.Google Scholar
Ferraris, C. White, T.J., Plévert, J. and Wegner, R. (2006) Nanometric modulation in apatite. Physics and Chemistry of Minerals, (submitted).CrossRefGoogle Scholar
Gillanders, R.J. (1981) Famous mineral localities: the Leadhills-Wanlockhead district, Scotland. Mineralogical Record, 12, 235250.Google Scholar
Gołębiowska, B., Pieczka, A. and Franus, W. (2002) Ca-bearing phosphatian mimetite from Rgdziny, Lower Silesia, Poland. Neues Jahrbuch für Mineralogie Monatshefte, 3141.CrossRefGoogle Scholar
Griffin, W.L., Carswell, D.A. and Nixon, P.H. (1979) Lower-crustal granulites and eclogites from Lesotho, Southern Africa. Pp. 5986 in: The Mantle Sample: Inclusions in Kimberlites and Other Volcanics (Boyd, F.R. and Meyer, H.O.A., editors). Proceedings of the Second International Kimberlite Conference, AGU, Washington D.C. CrossRefGoogle Scholar
Harada, K., Nagashima, K., Nakao, K. and Kato, A. (1971) Hydroxylellestadite, a new apatite from Chichibu Mine, Saitama prefecture, Japan. American Mineralogist, 56, 15071518.Google Scholar
Hughes, J.M. and Drexler, J.W. (1991) Cation substitution in the apatite tetrahedral site: crystal structures of type hydroxylellestadite and type fermorite. Neues Jahrbuch für Mineralogie Monatshefte, 327336.Google Scholar
Jackson, B. (1990) Queitite, a first Scottish occurrence. Scottish Journal of Geology, 26, 5758.CrossRefGoogle Scholar
Keller, P. and Dunn, P.J. (1982) Plumbotsumite, Pb5(OH)10Si4O8, a new lead silicate from Tsumeb, Namibia. Chemie der Erde, 41, 16.Google Scholar
Keller, P., Dunn, P.J. and Hess, H. (1979) Queitite, Pb4Zn2SO4(SiO4)4Si2O7, ein neues Mineral aus Tsumeb, Südwesafrika. Neues Jahrbuch fur Mineralogie Monatshefte, 203209.Google Scholar
Li, G., Peacor, D.R., Essene, E.J., Brosnahan, D.R. & Beane, RE. (1992) Walthierite and huangite, two new minerals of the alunite group, from El Indio Mine, Chile. American Mineralogist, 77, 12751284.Google Scholar
Liu, Y. and Comodi, P. (1993) Some aspects of the crystal-chemistry of apatites. Mineralogical Magazine, 57, 709719.CrossRefGoogle Scholar
Livingstone, A. (1993) Origin of the leadhillite polymorphs. Journal of the Russell Society, 5, 1113.Google Scholar
Livingstone, A. (1994a) An apatite high in lead from Wanlockhead, Strathclyde Region, Scotland. Mineralogical Magazine, 58, 159163.CrossRefGoogle Scholar
Livingstone, A. (19946) Analyses of calcian phosphatian vanadinite, and apatite high in lead, from Wanlockhead, Scotland. Journal of the Russell Society, 5, 124126.Google Scholar
Livingstone, A. (2002) Minerals of Scotland. National Museums of Scotland, Edinburgh, 212 pp.Google Scholar
Livingstone, A. and Russell, J.D. (1985) X-ray powder data for susannite and its distinction from leadhillite. Mineralogical Magazine, 49, 759761.CrossRefGoogle Scholar
Livingstone, A. and Sarp, H. (1984) Macphersonite, a new mineral from Leadhills, Scotland, and Saint-Prix, France: a polymorph of leadhillite and susannite. Mineralogical Magazine, 48, 277282.CrossRefGoogle Scholar
Livingstone, A., Ryback, G., Fejer, E.E. and Stanley, C.J. (1987) Mattheddleite, a new mineral of the apatite group from Leadhills, Strathclyde region. Scottish Journal of Geology, 23, 18.CrossRefGoogle Scholar
Lovering, J.F. and Widdowson, J.R. (1968a) Electron-microprobe analysis of anandite. Mineralogical Magazine, 36, 871874.CrossRefGoogle Scholar
Lovering, J.F. & Widdowson, J.R. (19686) Electron microprobe determination of sulphur coordination in minerals. Lithos, 1, 264267.CrossRefGoogle Scholar
Matthews, S.J., Moncrieff, D.H.S. and Carroll, M.R. (1999) Empirical calibration of the sulphur valence oxygen barometer from natural and experimental glasses: method and applications. Mineralogical Magazine, 63, 421431.CrossRefGoogle Scholar
McConnell, D. (1937) The substitution of SiO4- and SO4-groups for PO4-groups in the apatite structure; ellestadite, the end member. American Mineralogist, 22, 977986.Google Scholar
Moecher, D.P. and Essene, E.J. (1990) Phase equilibria for calcic scapolite, and implications of variable Al-Si disorder on P-T, T-XCO2, and a-X relations. Journal of Petrology, 31, 9971024.CrossRefGoogle Scholar
Moecher, D.P. and Essene, E.J. (1991) Calculation of CO2 activities from scapolite equilibria: constraints on the presence of a fluid phase during high grade metamorphism. Contributions to Mineralogy and Petrology, 108, 219240.CrossRefGoogle Scholar
Okrusch, M., Schroder, B. and Schnutgen, A. (1979) Granulite facies metabasite ejecta in the Laacher See area, Eifel, West Germany. Lithos, 12, 251270.CrossRefGoogle Scholar
Paar, W.H., Braithwaite, R.S.W., Chen, T.T. and Keller, P. (1984a) A new mineral, scotlandite (PbSO3) from Leadhills, Scotland: the first naturally occurring sulphite. Mineralogical Magazine, 48, 283288.CrossRefGoogle Scholar
Paar, W.H., Mereiter, K., Braithwaite, R.S.W., Keller, P. and Dunn, P.J. (19846) Chenite, Pb4Cu(SO4)2(OH)6, a new mineral from Leadhills, Scotland. Mineralogical Magazine, 50, 129135.CrossRefGoogle Scholar
Peacor, D.R., Rouse, R.C., Coskren, T.D. and Essene, E.J. (1999a) Destinezite (“diadochite“), Fe2(PO4)(SO4)-6H2O: its crystal structure and role as a soil component at Alum Cave Bluff, Tennessee. Clays and Clay Minerals, 47, 111.CrossRefGoogle Scholar
Peacor, D.R., Rouse, R.C., Essene, EJ. and Lauf, R. (19996) Coskrenite, a new Ce oxalate mineral from Alum Cave Bluff, Tennessee: characterization and crystal structure. The Canadian Mineralogist, 37, 14531462.Google Scholar
Peng, G., Luhr, J.F. and McGee, J.J. (1997) Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 82, 12101224.CrossRefGoogle Scholar
Pe-Piper, G. and Dolansky, L.M. (2005) Early diagenetic origin of Al phosphate-sulfate minerals (woodhouseite and crandallite series) in terrestrial sandstones, Nova Scotia, Canada. American Mineralogist, 90, 14341441.CrossRefGoogle Scholar
Piotrowski, A., Kahlenberg, V., Fischer, R.X. and Parise, J.B. (2002) The crystal structures of cesanite and its synthetic analog - a comparison. American Mineralogist, 87, 715720.CrossRefGoogle Scholar
Roberts, A.C., Stirling, J.A.R., Carpenter, G.J.C., Criddle, A.J., Jones, G.C., Birkett, T.C. and Birch, W.D. (1995) Shannonite, Pb2OCO3, a new mineral from the Grand Reef Mine, Graham County, Arizona, USA. Mineralogical Magazine, 59, 305310.CrossRefGoogle Scholar
Rouse, R.C. and Dunn, PJ. (1982) A contribution to the crystal chemistry of ellestadite and the silicate sulfate apatites. American Mineralogist, 67, 9096.Google Scholar
Rouse, R.C., Peacor, D.R., Coskren, T.D., Essene, E.J. and Lauf, R.J. (2001) The new minerals levinsonite-(Y) [(Y,Nd,Ce)Al(SO4)2C2O4-12H2O] and zugshunstite-(Ce) [(Ce,Nd,La)Al(SO4)2C2O4-12H2O]: coexisting phases with different structures exhibiting strong differentiation of LREE and HREE. Geochimica et Cosmochimica Acta, 65, 11011115.CrossRefGoogle Scholar
Sarp, H. and Burri, G. (1984) Seconde occurrence du nouveau mineral scotlandite PbSO3 . Schweizerische Mineralogische und Petrographische Mitteilungen, 64, 317321.Google Scholar
Sarp, H. and Perroud, P. (1991) Camerolaite, Cu4Al2[HSbO4,SO4](OH)10(CO3).2H2O, a new mineral from Cap Garonne mine, Var, France. Neues Jahrbuch für Mineralogie Monatshefte, 481-486.Google Scholar
Seeliger, E. and Berdesinski, W. (1956) Zur Genese des Caracolit in der Lagerstaette “Stein V”. Neues Jahrbuch für Mineralogie Monatshefte, 25–32.Google Scholar
Shiga, Y. and Urashima, Y. (1987) A sodian sulfatian fluorapatite from an epithermal calcite-quartz vein of the Kushikino Mine, Kagoshima Prefecture, Japan. The Canadian Mineralogist, 25, 673681.Google Scholar
Simon, G. and Essene, E.J. (1996) Phase relations among selenides, sulfides, tellurides and oxides. I. Thermodynamic data and calculated equilibria. Economic Geology, 91, 11831208.CrossRefGoogle Scholar
Simon, G., Kesler, S.E. and Essene, E.J. (1997) Phase relations among selenides, sulfides, tellurides and oxides. II. Applications to selenide deposits. Economic Geology, 92, 468484.CrossRefGoogle Scholar
Stalder, M. and Rozendaal, A. (2002) Graftonite in phosphatic iron formations associated with the mid-Proterozoic Gamsberg Zn-Pb deposit, Namaqua Province, South Africa. Mineralogical Magazine, 66, 915927.CrossRefGoogle Scholar
Steele, I.M., Pluth, J.J. and Livingstone, A. (2000) Crystal structure of mattheddleite: a Pb, S, Si phase with the apatite structure. Mineralogical Magazine, 64, 915921.CrossRefGoogle Scholar
Stormer, J.C., Pierson, M.L. and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. American Mineralogist, 78, 641648.Google Scholar
Streck, M.J. and Dilles, J.H. (1998) Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology, 26, 523526.2.3.CO;2>CrossRefGoogle Scholar
Temple, A.K. (1956) The Leadhills-Wanlockhead lead and zinc deposit. Transactions of the Royal Society of Edinburgh, 63, 96113.CrossRefGoogle Scholar
Wallace, P. and Carmichael, I.S.E. (1994) S speciation in submarine basaltic glasses as determined by measurements of S Ka X-ray wavelength shift. American Mineralogist, 79, 161167.Google Scholar