Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T12:26:01.583Z Has data issue: false hasContentIssue false

Megacrysts and ultramafic xenoliths from Kundelungu kimberlites (Shaba, Zaire)

Published online by Cambridge University Press:  05 July 2018

M. D. Kampata
Affiliation:
Géologie et Minéralogie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
J. Moreau
Affiliation:
Géologie et Minéralogie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
J. Hertogen
Affiliation:
Fysico-chemische geologie, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
D. Demaiffe
Affiliation:
Pétrologie et Géodynamique Chimique, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
E. Condliffe
Affiliation:
Department of Earth Sciences, The University of Leeds, Leeds LS2 9JT, UK
N. F. Mvuemba
Affiliation:
Département des Sciences de la Terre, Université de Kinshasa, B.P.190, Zaire

Abstract

Some twenty kimberlite pipes outcrop along the eastern and western borders of the Kundelungu plateau, Shaba Province, Zaire. They are arranged roughly along two north-south trending alignments. The pipes probably intruded the Bangweulu Block, which stabilized around 1800 Ma. The exceptionally fresh kimberlites contain mantle-derived nodules (peridotites and eclogites), as well as megacrysts which may reach up to several cm in diameter. The most important megacrysts are garnets, ilmenites, clinopyroxenes, orthopyroxenes and olivines. Micas and diamonds are rarely observed. The clinopyroxenes can be subdivided in two groups: (1) a Ca-rich, low-T type, similar to the Cr-rich diopsides found in ‘depleted’ (granular) peridotites; and (2) subcalcic clinopyroxene comparable to the megacrysts and to the clinopyroxenes of ‘fertile’ (sheared) peridotites. The orthopyroxenes are less frequent and are Ca-poor enstatites (0.07–0.42 wt.% CaO) and Ti-bronzites (CaO <1.3 wt.%). All the analysed garnets are Ca-rich (>4.5 wt.% CaO) and all fall in the lherzolite field defined by Sobolev et al., 1973. The low-Ca garnets which appear in many diamond-bearing kimberlites have never been observed in Zaire, neither in the diamond-poor Kundelungu pipes nor in the diamond-rich Mbuji-Mayi pipes. The ilmenites define a trend close to the ‘magmatic Mg-enrichment trend';. The olivine macrocrysts have Fo contents comparable to those of peridotites (Fo90–93). The ultramafic nodules comprise lherzolites, harzburgites, pyroxenites, wehrlites and dunites. The granular textures and P-T equilibrium conditions (770–1380°C and 28–61 kbar) deduced from their mineral compositions, show clearly that they were derived from a mantle zone on the continental geotherm (90–190 km depth). The eclogite nodules, which are less frequent, contain only two mineral phases (pyrope-almandine-grossular and omphacite), and the texture and the mineral compositions are similar to those of Roberts Victor eclogites. Our findings support the conclusion of Nixon and Condliffe (1989) that low-T peridotites, eclogites and pyroxenites derived from ‘depleted’ lithosphere, while Cr-poor garnet, subcalcic diopside and bronzite megacrysts cristallized from fertile asthenosphere.

Type
Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agee, J.J., Garrison, J.R, and Taylor, L.A. (1982) Petrogenesis of oxide minerals in kimberlite, Elliott county, Kentucky. Amer. Mineral., 67, 28–42.Google Scholar
Boyd, F.R. (1987) High-and low temperature garnet peridotite xenoliths and their possible relation to the lithosphere-asthenosphere boundary beneath southern Africa. In Mantle Xenoliths (Nixon, P.H., ed.). New York, John Wiley and Sons, 382–403.Google Scholar
Boyd, F.R. and Clement, C.R. (1977) Compositional zoning of olivines in kimberlites from De Beers Mine, Kimberley, South Africa. Carnegie Inst. Washington YearbL, 75, 484–7.Google Scholar
Boyd, F.R. and Nixon, P.H.(1975) Origins of the ultramafic nodules from some kimberlites of Northern Lesotho and the Monastery Mine, South Africa. Phys. Chem. Earth, 9, 431–54.CrossRefGoogle Scholar
Boyd, F.R. and Nixon, P.H. (1978) Ultramafic nodules from the Kimberley pipes, South Africa. Geochim. Cosmochim. Ada, 42, 1367–82.CrossRefGoogle Scholar
Clement, C.R., Skinner, E.M.W. and Scott Smith, B.H. (1984) Kimberlite re-defined. J. Geol, 32, 223–8.CrossRefGoogle Scholar
Dawson, J.B. (1980) Kimberlites and their Xenoliths. Berlin, Springer-Verlag, 252p.CrossRefGoogle Scholar
Demaiffe, D., Fieremans, M. and Fieremans, C. (1991) The kimberlites of Central Africa: A review. In Magmatism in Extentional Structural Settings (Kumpunzu, A.B. and Lubala, R.T., eds.) The Phanerozoic African plate: Berlin, Springer-Verlag, 538-57.Google Scholar
Eggler, D.H. and MacCallum, M.E. (1976) A geotherm from megacrysts in the Sloan kimberlite pipes, Colorado. Carnegie Inst. Washington Yearbk., 75, 538–41.Google Scholar
Eggler, D.H., MacCallum, M.E. and Smith, C.B. (1979) Megacryst assemblages in kimberlites from northern Colorado and southern Wyoming. In The mantle sample: inclusions in kimberlites and other volcanics (Boyd, F.R. and Meyer, H.O.A., eds). Amer. Geophys. Union, Washington, 198-213.Google Scholar
Finnerty, A.A. and Boyd, F.R. (1984) Evaluation of thermobarometers for garnet peridotites. Geochim. Cosmochim. Ada, 48, 15–27.CrossRefGoogle Scholar
Finnerty, A.A. and Boyd, F.R. (1987) Thermobarometry for garnet peridotites: basis for the determination of thermal and composition structure of the upper mantle. In Mantle Xenoliths (Nixon, P.H., ed.). New York, John Wiley and Sons, 382-402.Google Scholar
Ganguly, J. (1979) Garnet and clinopyroxene solid solution and geothermometry based on Fe-Mg distribution coefficient. Geochim. Cosmochim. Ada, 43, 1021–9.CrossRefGoogle Scholar
Ganguly, J. and Bhattacharya, P.K. (1987) Xenoliths in Proterozoic kimberlites from southern India: petrology and geophysical implications. In Mantle Xenoliths (Nixon, P.H., ed.). New York, John Wiley and Sons, 241-9.Google Scholar
Garrison, J.R. and Taylor, L.A. (1980) Megacrysts and xenoliths in kimberlite, Elliott County, Kentucky: a mantle sample from beneath the Appalachian plateau. Contrib. Mineral. Petrol., 75, 27–42.CrossRefGoogle Scholar
Gurney, J.J., Jakob, W.R.O. and Dawson, J.B. (1979) Megacrysts from the Monastery kimberlite pipe, South Africa. In The mantle sample: inclusions in kimberlites and other volcanics (Boyd, F.R. and Meyer, H.O.A., eds.) Amer. Geophys. Union, Washington, 104-26.Google Scholar
Haggerty, S.E. Hardie, R.B. and McMahon, B.M. (1979) The mineral chemistry of ilmenite nodule assciations from the Monastery diatreme. In The mantle sample: inclusions in kimberlites and other volcanics. (Boyd, F.T. and Meyer, H.O.A., eds.) Amer. Geophys. Union, Washington, 245-9.Google Scholar
Harte, B. (1983) Mantle peridotites and processes — the kimberlite sample. In Continental Basalts and Mantle Xenoliths (Hawkesworth, C.J. and Norry, M.J., eds.) Nantwich, Cheshire, Shiva Publishing Ltd., 46-91.Google Scholar
Hunter, R.H. and Taylor, L.A. (1984) Magma-mixing in the low velocity zone: kimberlitic megacrysts from Fayette County kimberlite, Pennsylvania. Amer. Mineral, 69, 16–29.Google Scholar
Kennedy, C.S. and Kennedy, G.C. (1976) The equili-brium boundary between graphite and diamond. J. Geophys. Res., 81, 2467–70.CrossRefGoogle Scholar
Kampata, M.D. (1993) Mineralogie et geochimie des kimberlites du Kundelungu (Shaba, Zaire). Unpublished Ph.D. Thesis, Univ. Cath. Louvain, Belgique.Google Scholar
Lindsley, D.H and Dixon, S.A. (1976) Diopside-enstatite equilibria at 850-1400°C, 5 to 35 kb. Amer. J. Set, 276, 1285–301.Google Scholar
MacGregor, I.D. (1974) The system MgO-Al2O3-SiO2: solubility of A12O3 in enstatite for spinel and garnet peridotite compositions. Amer. Mineral., 59, 110–9.Google Scholar
Mitchell, R.H. (1977) Geochemistry of magnesian ilmenites from kimberlites in South Africa and Lesotho. Lithos, 10, 29–37.CrossRefGoogle Scholar
Mitchell, R.H. (1986) Kimberlites: Mineralogy, geochemistry and petrology. New York and London, Plenum Press, 443 pp.CrossRefGoogle Scholar
Mvuemba, N. (1980) Mineralogie des megacristaux, des xenolithes eclogitiques et granulitiques et des inclusions minerales dans les diamants provenant de la kimberlite du Kasai Oriental (Zaire). Unpublished Ph.D. Thesis, Univ. Cath. Louvain, Belgique.Google Scholar
Ngoyi, K., Liegeois, J.P., Demaiffe, D. and Dumont, P. (1991) Age tardi-Ubendien (Proterozoique Inferieur) des d6mes granitiques de l'arc cuprifere Zairo-Zambien. C. R. Acad. Sci. Paris, 313, Serie II, 83-9.Google Scholar
Nixon, P.H. (1987) Kimberlitic xenoliths and their cratonic setting. In Mantle Xenoliths (Nixon, P.H., ed.) New York, John Wiley and sonss, 215-40.Google Scholar
Nixon, P.H. and Boyd, F.R. (1973a) Petrogenesis of the granular and sheared ultrabasic nodule suite in kimberlites. In Lesotho kimberlites. (P.H., Nixon, ed.) Lesotho Nat. Dev. Corp. Maseru, 67-75.Google Scholar
Nixon, P.H. and Boyd, F.R. (19736) The discrete nodule association in kimberlites in northern Lesotho In Lesotho kimberlites. (Nixon, P.H., ed.). Lesotho Nat. Dev. Corp. Maseru, 39-47.Google Scholar
Nixon, P.H. and Condliffe, E. (1989) Tanzania kimberlites: a preliminary heavy mineral study. In Proceedings of the Fourth International Kimberlite Conference, Kimberlites and Related Rocks — Vol. 1.Geol. Assoc. Australia Spec. Publ. No. 14, 407–16.Google Scholar
O'Neill, H.St.C. and Wood, B.J. (1979) An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib. Mineral, Petrol., 70, 59–70.CrossRefGoogle Scholar
Parfenoff, A. (1982) Un mineral traceur pour la prospection alluvionnaire: L'ilmenite. Relation entre 1'ilmenites magnesiennes, basaltes alcalins, kimber-lites et diamant. BRGM, Doc. Reck Geol. Miniires, 37.Google Scholar
Pasteris, J.D. (1980) The significance of groundmass ilmenite and megacryst ilmenite in kimberlites, South Africa. Mineral. Mag. 23, 277–86.Google Scholar
Pollack, H.N. and Chapman, D.S. (1977) On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics, 38, 279–96.CrossRefGoogle Scholar
Reid, A.M., Donaldson, C.H., Brown, R.W., Ridley, W.I. and Dawson, J.B. (1975) Mineral chemistry of peridotite xenoliths from the Lashaine Volcano, Tanzania. Phys. Chem. Earth, 9, 525–43.CrossRefGoogle Scholar
Schulze, D.J. (1984) Cr-poor megacrysts from the Hamilton Branch kimberlite, Elliott County, Kentucky, In Kimberlites II: The Mantle and Crust-Mantle Relationships (Kornprobst, J., ed.). Third International Kimberlite Conference, vol. 1 New York, Elsevier Press p. 97–108.Google Scholar
Schulze, D.J. (1987) Megacrysts from alkalic volcanic rocks. In Mantle Xenoliths (Nixon, P.H., ed.) New York, John Wiley and Sons, p. 432-33.Google Scholar
Shee, S.R. (1984) The oxide minerals of the Wesselton Mine, Kirhberley, South Africa, In Kimberlites II: The Mantle and Crust-Mantle Relationships (Kornprobst, J., ed.). Third International Kimberlite Conference, vol. 1 New York, Elsevier Press, 59–73.Google Scholar
Smith, J.V., Brennesholtz, R. and Dawson, J.B. (1978) Chemistry of micas from kimberlites and xenoliths, I Micaceous kimberlites. Geochim. Cosmochim. Ada, 42, 959–71.CrossRefGoogle Scholar
Sobolev, N.V., Lavren'Yev, Yu.G., Pokhilenko, N.P. and Usova, L.V. (1973) Chrome-rich garnets from the kimberlites of Yakutia and their paragenesis. Contr. Mineral, Petrol, 40, 39–52.CrossRefGoogle Scholar
Sprigg, A.J. (1988) An isotopic and geochemical study of kimberlites and associated alkaline rocks from Namibia. Unpubl. Ph.D. Thesis, The University of Leeds U.K.Google Scholar
Verhoogen, J. (1938) Les pipes de kimberlites de Katanga. Ann. Serv. Mines, du C.S.K. Pub., 9, 1–50.Google Scholar
Wyllie, P.J. (1987) Metasomatism and fluid generation in mantle xenoliths. In Mantle Xenoliths (Nixon, P.H., ed.) New York, John Wiley and Sons, 600-9.Google Scholar