Skip to main content Accessibility help

Manganese incorporation in synthetic hercynite

  • G. D. Bromiley (a1) (a2), G. D. Gatta (a3) (a4) and T. Stokes (a1)


Manganese incorporation in synthetic hercynite, and partitioning between hercynite and silicate melt synthesized at 1.0 GPa, 1250°C, and at an fO2 buffered by Fe–FeO, has been studied by X-ray absorption spectroscopy and single-crystal X-ray structure refinement. Spectra indicate the presence of both Mn2+ and Mn3+ (and possibly also Mn4+) in synthetic hercynite and partitioning of Mn2+ into the melt phase, and Mn3+ into hercynite, respectively, under run conditions. X-ray refinement is consistent with partial disorder of Fe and Al across tetrahedral and octahedral sites. A higher than expected degree of Fe-Al disorder in the Mn-bearing hercynite can be explained by preferential incorporation of Mn2+ onto the tetrahedral site, and indicates that Fe-Al disorder in pure, stoichiometric hercynite cannot necessarily be used to determine closure temperatures in natural spinel. However, partitioning of Mn2+ and Mn3+ between melt and hercynite suggests that Mn incorporation in hercynite could be used as a measure of fO2 conditions in magmas during spinel crystallization.


Corresponding author


Hide All
Agilent Technologies (2012) Xcalibur CCD system, Crysalis software system. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.
Andreozzi, G.B., Lucchesi, S., Skogby, H. and Della Giusta, A. (2001) Compositional dependence of cation distribution in some synthetic (Mg,Zn) (Al,Fe3+)2O4 spinels. European Journal of Mineralogy, 13, 391402.
Andreozzi, G.B. and Lucchesi, S. (2002) Intersite distribution of Fe2+ and Mg in the spinel (sensu stricto)-hercynite series by single-crystal X-ray diffraction. American Mineralogist, 87, 11131120.
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1997) Handbook of Mineralogy Vol . III : Halides , Hydroxides , Oxides. Mineralogical Society of America, Chantilly, Virginia, USA. Beard, J.S. and Tracy, R.J. (2002) Spinels and other oxides in Mn-rich rocks from the Hutter mine, Pittsylvania county, Virginia, USA: Implications for miscibility and solvus relations among jacobsite, galaxite, and magnetite. American Mineralogist, 87, 690698.
Bosi, F., Hålenius, U., Andreozzi, G.B., Skogby, H. and Lucchesi, S. (2007) Structural refinement and crystal chemistry of Mn-doped spinel: A case for tetrahedrally coordinated Mn3+ in an oxygen-based structure. American Mineralogist, 92, 2733.
Bromiley, G., Keppler, H., McCammon, C., Bromiley, F. and Jacobsen, S. (2004) Hydrogen solubility and speciation in natural, gem-quality Cr-diopside. American Mineralogist, 89, 941949.
Bromiley, G.D., Nestola, F., Redfern, S.A.T. and Zhang, M. (2010) Water incorporation in synthetic and natural MgAl 2O4 spinel. Geochimica et Cosmochimica Acta, 74, 705718.
Carbonin, S., Russo, U. and Della Giusta, A. (1996) Cation distribution in some natural spinels from Xray diffraction and Mössbauer spectroscopy. Mineralogical Magazine, 60, 355368.
Guillemet-Fritsch, S., Navrotsky, A., Tailhades, P., Coradin, H. and Wang, M. (2005) Thermo-chemistry of iron manganese oxide spinels. Journal of Solid State Chemistry, 178, 106113.
Hålenius, U., Skogby, H. and Andreozzi, G.B. (2002) Influence of cation distribution on the optical absorption spectra of Fe3+-bearing spinel s.s.-hercynite crystals: Evidence for electron transitions in FeVI(2+)-FeVI(3+) clusters. Physics and Chemistry of Minerals, 29, 319330.
Harrison, R.J., Redfern, S.A.T. and O’Neill, H.S.C. (1998) The temperature dependence of the cation distribution in synthetic hercynite (FeAl2O4) from in-situ neutron structure refinements. American Mineralogist, 83, 10921099.
Hill, R.J. (1984) X-ray-powder diffraction profile refinement of synthetic hercynite. American Mineralogist, 69, 937942.
Johnson, H.P. and Jensen, S.D. (1974) High-temperature oxidation of magnetite to maghemite. Transactions-American Geophysical Union, 55, 233233.
Kohn, S.C., Charnock, J.M., Henderson, C.M.B. and Greaves, G.N. (1990) The structural environments of trace-elements in dry and hydrous silicate-glasses – a manganese and strontium K-edge X-ray absorption spectroscopic study. Contributions to Mineralogy and Petrology, 105, 359368.
Larson, A.C. (1967) Inclusion of secondary extinction in least-squares calculations. Acta Crystallographica, 23, 664665.
Larsson, L., Oneill, H.S. and Annersten, H. (1994) Crystal-chemistry of synthetic hercynite (FeAl2O4) from XRD structural refinements and Mössbauer spectroscopy. European Journal of Mineralogy, 6, 3951.
Lavina, B., Princivalle, F. and Della Giusta, A. (2005) Controlled time-temperature oxidation reaction in a synthetic Mg-hercynite. Physics and Chemistry of Minerals, 32, 8388.
Lavina, B., Cesare, B., Alvarez-Valero, A.M., Uchida, H., Downs, R.T., Koneva, A. and Dera, P. (2009) Closure temperatures of intracrystalline ordering in anatectic and metamorphic hercynite, Fe2+Al2O4. American Mineralogist, 94, 657665.
Lenaz, D., Skogby, H., Princivalle, F. and Hålenius, U. (2004) Structural changes and valence states in the MgCr2O4-FeCr2O4 solid solution series. Physics and Chemistry of Minerals, 31, 633642.
Lenaz, D., Skogby, H., Princivalle, F. and Hålenius, U. (2006) The MgCr2O4-MgFe2O4 solid solution series: Effects of octahedrally coordinated Fe3+ on T-O bond lengths. Physics and Chemistry of Minerals, 33, 465474.
Liang, X.L., Zhong, Y.H., Tan, W., Zhu, J.X., Yuan, P., He, H.P. and Jiang, Z. (2013) The influence of substituting metals (Ti, V, Cr, Mn, Co and Ni) on the thermal stability of magnetite. Journal of Thermal Analysis and Calorimetry, 111, 13171324.
Lotgering, F.K. (1964) Semiconduction + cation valencies in manganese ferrites. Journal of Physics and Chemistry of Solids, 25, 95103.
Lucchesi, S., Russo, U. and DellaGiusta, A. (1997) Crystal chemistry and cation distribution in some Mn-rich natural and synthetic spinels. European Journal of Mineralogy, 9, 3142.
Manceau, A., Marcus, M.A. and Grangeon, S. (2012) Determination of Mn valence states in mixed-valent manganates by xanes spectroscopy. American Mineralogist, 97, 816827.
Miles, A.J., Graham, C.M., Hawkesworth, C.J., Gillespie, M.R., Hinton, R.W. and Edinburgh Ion Microprobe Facilty (2013) Evidence for distinct stages of magma history recorded by the compositions of accessory apatite and zircon. Contributions to Mineralogy and Petrology, 166, 119.
Myers, J. and Eugster, H.P. (1983) The system Fe-Si-O: oxygen buffer calibrations to 1,500K. Contributions to Mineralogy and Petrology, 82, 7590.
O’Neill, H.S.C. and Navrotsky, A. (1983) Simple spinels-crystallographic parameters, cation radii, lattice energies, and cation distribution. American Mineralogist, 68, 181194.
Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537541.
Raye, U., Anthony, E.Y., Stern, R.J., Kimura, J.I., Ren, M.H., Qing, C. and Tani, K. (2011) Composition of the mantle lithosphere beneath south-central Laurentia: Evidence from peridotite xenoliths, Knippa, Texas. Geosphere, 7, 710723.
Redfern, S., Harrison, R., O’Neill, H.S.C. and Wood, D. (1999) Thermodynamics and kinetics of cation ordering in MgAl2O4 spinel up to 1600ºC from in situ neutron diffraction. American Mineralogist, 84, 299310.
Righter, K., Sutton, S.R., Newville, M., Lei, L., Schwandt, C.S., Uchida, H., Lavina, B. and Downs, R.T. (2006) An experimental study of the oxidation state of vanadium in spinel and basaltic melt with implications for the origin of planetary basalt. American Mineralogist, 91, 16431656.
Schollenbruch, K., Woodland, A.B. and Frost, D.J. (2010) The stability of hercynite at high pressures and temperatures. Physics and Chemistry of Minerals, 37, 137143.
Sheldrick, G. (1997) SHELX-97-a program for crystal structure refinement. University of Gottingen, Germany. Turnock, A.C. and Eugster, H.P. (1962) Fe-Al oxides-phase relationships below 1,000ºC. Journal of Petrology, 3, 533565.
Waerenborgh, J.C., Figueiredo, M.O., Cabral, J.M.P. and Pereira, L.C.J. (1994) Powder XRD structure refinements and Fe-57 Mössbauer-effect study of synthetic Zn1-xFexAl2O4 (0<x41) spinels annealed at different temperatures. Physics and Chemistry of Minerals, 21, 460468.
Wilson, A.J.C. and Prince, E. (Editors) (1999) International Tables for X-ray Crystallography, Volume C: Mathematical, Physical and Chemical Tables (2nd Edition). Kluwer Academic, Dordrecht, The Netherlands. Woodland, A.B. and Wood, B.J. (1990) The breakdown of hercynite at low fO2 . American Mineralogist, 75, 13421348.


Manganese incorporation in synthetic hercynite

  • G. D. Bromiley (a1) (a2), G. D. Gatta (a3) (a4) and T. Stokes (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed