Skip to main content Accessibility help
×
Home

Magnetic spectroscopy of nanoparticulate greigite, Fe3S4

  • Richard A. D. Pattrick (a1), Victoria S. Coker (a1), Masood Akhtar (a2), M. Azad Malik (a2), Edward Lewis (a2), Sarah Haigh (a2), Paul O'Brien (a2), Padraic C. Shafer (a3) and Gerrit van der Laan (a1) (a4)...

Abstract

Synthesis of Ni and Zn substituted nano-greigite, Fe3S4, is achieved from single source diethyldithiocarbamato precursor compounds, producing particles typically 50–100 nm in diameter with plate-like pseudohexagonal morphologies. Up to 12 wt.% Ni is incorporated into the greigite structure, and there is evidence that Zn is also incorporated but Co is not substituted into the lattice. The Fe L 3 X-ray absorption spectra for these materials have a narrow single peak at 707.7 eV and the resulting main X-ray magnetic circular dichroism (XMCD) has the same sign at 708.75 eV. All XMCD spectra also have a broad positive feature at 711 eV, a characteristic of covalent mixing. The greigite XMCD spectra contrast with the three clearly defined XMCD site specific peaks found in the ferrite spinel, magnetite. The Fe L 2,3X-ray absorption spectra and XMCD spectra of the greigite reflect and reveal the high conductivity of greigite and the very strong covalency of the Fe–S bonding. The electron hopping between Fe3+ and Fe2+ on octahedral sites results in an intermediate oxidation state of the Fe in the Oh site of Fe2.5+ producing an effective formula of [Fe3+ ↑]A-site[2Fe2.5+ ↓]B-siteS4 2–]. The Ni L 2,3 X-ray absorption spectra and XMCD reveal substitution on the Oh site with a strongly covalent character and an oxidation state <Ni1.5+ in a representative formula [Fe3+ ↑]A[[(2 – x)Fe2.5+ ↓][Nix 1.5+]]BS4 2–.

Copyright

Corresponding author

References

Hide All
Abdulwahab, K.O., Malik, M.A., O'Brien, P., Timco, G. A., Tuna, F., Muryn, C.A., Winpenny, R.E.P., Pattrick, R.A.D., Coker, V.S. and Arenholz, E. (2014) A one-pot synthesis of monodispersed iron cobalt oxide and iron manganese oxide nanoparticles from bimetallic pivalate clusters. Chemistry of Minerals, 26, 9991013.
Akhtar, M., Akhter, J., Malik, M.Z., O'Brien, P., Tuna, F., Raftery, J. and Helliwell, M. (2011) Deposition of iron sulfide nanocrystals from single source precursors. Journal Materials Chemistry, 21, 97379745.
Arenholz, E. and Prestemon, S.O. (2005) Design and performance of an eight-pole resistive magnet for soft X-ray magnetic dichroism measurements. Review of Scientific Instruments, 76, 083908/1-8.
Bauer, E., Man, Ka.L., Pavlovska, P., Locatelli, A., Mentes, T.O., Niño, M.A. and Altman, M.S. (2014) Fe3S4 (greigite) formation by vapor-solid reaction. Journal Materials Chemistry, A, 2, 19031913.
Bazylinski, D.A., Frankel, R.B., Heywood, B.R., Mann, S., King, J.W., Donaghay, P.L. and Hanson, A.K. (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Applied Environmental Microbiology, 61, 32323239.
Beal, J.H.L., Prabakar, S., Gaston, N., Teh, G.B., Etchegoin, P.G., Williams, G. and Tilley, R.D. (2011) Synthesis and comparison of the magnetic properties of iron sulfide spinel and iron oxide spinel nanocrystals. Chemistry of Materials, 23, 25142517.
Beal, J.H.L., Etchegoin, P.G. and Tilley, R.D. (2012) Synthesis and characterisation of magnetic iron sulfide nanocrystals. Journal of Solid State Chemistry, 189, 5762.
Byrne, J.M., Coker, V.S., Cespedes, E., Wincott, P.L., Vaughan, D.J., Pattrick, R.A.D., van der Laan, G., Arenholz, E., Tuna, F., Bencsik, M. et al. (2014) Biosynthesis of zinc substituted magnetite nanoparticles with enhanced magnetic properties. Advanced Functional Materials, 24, 25182529.
Chang, L., Roberts, A.P., Tang, Y., Rainford, B.D., Muxworthy, A.R. and Chen, Q. (2008) Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). Journal Geophysical Research, 113, B06104, 116.
Chang, L., Rainford, B.D., Stewart, J.R., Ritter, C., Roberts, A.P., Tang, Y and Chen, Q. (2009a) Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction. Journal Geophysical Research, 114, B07101, 110.
Chang, L., Roberts, A.P., Rowan, C.J., Tang, Y., Pruner, P., Chen, Q. and Horng, C.S. (2009b) Low-temperature magnetic properties of greigite (Fe3S4). Geochemistry Geophysics Geosystems, 10, Q01Y04, 114.
Chang, Yo-S., Savitha, S., Sadhasivam, S., Hsu, C-K. and Lin, F-H. (2011) Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia. Journal of Colloid and Interface Science, 363, 314319.
Chang, L., Pattrick, R.A.D., van der Laan, G., Coker, V.S. and Roberts, A.P. (2012a) Enigmatic X-ray magnetic circular dichroism in greigite, Fe3S4. The Canadian Mineralogist, 50, 667674.
Chang, L., Winklhofer, M., Roberts, A.P., Dekkers, M.J., Horng, C.-S., Hu, L. and Chen, Q.W. (2012b) Ferromagnetic resonance characterization of greigite (Fe3S4), monoclinic pyrrhotite (Fe7S8) and non-interacting titanomagnetite (Fe3-xTixO4). Geochemistry, Geophysics, Geosystems, 13, Q05Z41, 119.
Charnock, J.M., Henderson, C.M.B., Mosselmans, J.F.W. and Pattrick, R.A.D. (1996) 3d transition metal L-edge X-ray absorption studies of the dichalcogenides of Fe, Co and Ni. Physics and Chemistry of Minerals, 23, 403–08.
Coey, J.M.D., Spender, M.R. and Morrish, A.H. (1970) The magnetic structure of the spinel, Fe3S4 . Solid State Communications, 8, 16051608.
Coker, V.S., Pearce, C.I., Pattrick, R.A.D., van der Laan, G., Telling, N.D., Charnock, J.M. and Lloyd, J.R. (2008) Probing the site occupancies of Co-, Ni-, and Mn-substituted biogenic magnetite using XAS and XMCD. American Mineralogist, 93, 11191132.
Coker, V.S., Telling, N.D., van der Laan, G., Pattrick, R.A. D., Pearce, C.I., Arenholz, E., Tuna, F., Winpenny, R. and Lloyd, J.R. (2009) Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties. ACS Nano, 3, 19221928.
Dekkers, M.J., Passier, H.F and Schoonen, M.A.A. (2000) Magnetic properties of hydrothermally synthesized greigite (Fe3S4) II. Hig-and low-temperature characteristics. Geophysical Journal International, 141, 809819.
Devey, A.J., Grau-Crespo, R. and de Leeuw, N.H. (2009) Electronic and magnetic structure of Fe3S4. GGA + U investigation. Physical Review B, 79, 195126, 17.
Dunlop, D.J. and Özdemir, Ö. (1997) Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, UK, 573 pp.
Erwin, S.C., Zu, L., Haftel, M.I., Efros, A.L., Kennedy, T. A. and Norris, D.J. (2005) Doping semiconductor nanocrystals. Nature, 436, 9194.
Frank, U., Nowaczyk, N.R. andNegendank, J.F.W. (2007) Geomagnetism, rock magnetism and palaeomagnet-ism of greigite bearing sediments from the Dead Sea, Israel. Geophysical Journal International, 168, 904920.
Gibbs, G.V., Cox, D.F., Rosso, K.M., Ross, N.L., Downs, R.T. and Spackman, M.A. (2007) Theoretical electron density distributions for Fe-and Cu-Sulfide Earth materials: A connection between bond length, bond critical point properties, local energy densities, and bonded interactions. Journal of Physics and Chemistry 111, 19231931.
Gota, S., Gautier-Soyer, M. and Sacchi, M. (2000) Fe 2p absorption in magnetic oxides: Quantifying angular-dependent saturation effects. Physical Review B, 62, 41874190.
Han, W. and Gao, M. (2008) Investigations on iron sulfide nano sheets prepared via a single-source precursor approach. Crystal Growth and Design, 8, 10231030.
Haverkort, M.W., Zwierzycki, M. and Andersen, O.K. (2012) Multiplet ligand-field theory using Wannier orbitals. Physical Review B, 85, 165113, 120.
Heywood, B.R., Mann, S. and Frankel, R.B. (1991) Structure, morphology and growth of biogenic greigite (Fe3S4). Materials Research Society Symposium Proceedings, 218, 93108.
Hoggins, J.T. and Steinfink, H.E. (1976) Empirical bonding relationships in metal-iron-sulfide com-pounds. Inorganic Chemistry, 15, 16821685.
Lefevre, C.T., Menguy, N., Abreu, F., Lins, U., Pósfai, M., Prozorov, T., Pignol, D., Frankel, R.B. and Bazylinski, D.A. (2011) A cultured greigite-producing magneto-tactic bacterium in a novel group of sulfate-reducing bacteria. Science, 334, 17201723.
Letard, I., Sainctavit, P., Menguy, N., Valet, J.-P., Isambert, A., Dekkers, M. and Gloter, A. (2005) Mineralogy of greigite, Fe3S4 . Physica Scripta, T115, 489491.
Letard, I., Sainctavit, P., Cartier dit Moulin, C., Kappler, J-P., Ghigna, P., Gatteschi, D. and Doddi, D. (2007) Remnant magnetization of Fe8 high-spin molecules: X-ray magnetic circular dichroism at 300 K. Journal Applied Physics, 101, 11392, 16.
Lewis, D.J., Tedstone, A.A., Zhong, X.I., Lewis, E.A., Rooney, A.I., Savjani, N., Brent, J.R., Haigh, S.J., Burke, M.G., Muryn, A. et al. (2015) Thin films of molybdenum disulfide doped with chromium by aerosol-assisted chemical vapor deposition (AACVD). Chemistry of Materials, 27, 13671374.
Lyubutin, I.S., Starchikov, S.S., Lin, C-R., Lu, S-Z., Shaikh, M.O., Funtov, K.O., Dmitrieva, T.V., Ovchinnikov, S.G., Edelman, I.S. and Ivantsov, R. (2013) Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process. Journal Nanoparticles Research, 15, 1397, 113.
Mann, S., Sparks, N.H.C., Frankel, R.B., Bazylinski, D.A. and Jannasch, H.W. (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 343, 258261.
Pattrick, R.A.D., van der Laan, G., Henderson, C.M.B., Kuiper, P., Dudzik, E., Vaughan, D.J. (2002) Cation site occupancy in spinel ferrites studied by X-ray magnetic circular dichroism: Developing a method for mineralogists. European Journal of Mineralogy, 14, 10951102.
Pattrick, R.A.D., Coker, V.S., Pearce, C.I., Telling, N.D. and van der Laan, G. (2008) The oxidation state of copper and cobalt in carrollite, CuCo2S4 . The Canadian Mineralogist, 46, 13171322.
Pattrick, R.A.D., Coker, V.S., Pearce, C.I., Telling, N.D., van der Laan, G. and Lloyd, J.R. (2012) Extracellular bacterial production of doped magnetite nanoparticles. Nanoscience: Nanostructures Through Chemistry, 1, 102111.
Pérez-Dieste, V., Crain, J.N., Kirakosian, A., McChesney, J.L., Arenholz, E., Young, A.T., Denlinger, J.D., Ederer, D.L., Callcott, T.A., Lopez-Rivera, S.A. et al. (2004) Unoccupied orbitals of 3d transition metals in ZnS. Physcial Review B, 70, 085205, 15.
Pósfai, M., Cziner, K, Marion, E.,Márton, P., Buseck, P. R., Frankel, R.B. and Bazylinski, D.A. (2001) Crystal-size distributions and possible biogenic origin of Fe sulphides. European Journal of Mineralogy, 13, 691703.
Qian, X.F., Zhang, X.M., Wang, C., Xie, Y Wang, W.Z. and Qian, Y.T. (1999) The preparation and phase transition of nanocrystalline iron sulfides via toluene-thermal process. Materials Science and Engineering, 64, 170173.
Reynolds, R.L., Tuttle, M.L., Rice, C.A., Fishman, N.S., Karachewski, J.A. and Sherman, D.S. (1994) Magnetization and geochemistry of greigite bearing Cretaceous strata, North Slope Basin, Alaska. American Journal Science, 294, 485528.
Rickard, D. and Luther III, G.W (2007) Chemistry of iron sulfides. Chemical Reviews, 107, 514562.
Roberts, A.P. and Weaver, R. (2005) Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 231, 263277.
Roberts, A.P., Jiang, W.T., Florindo, F., Horng, C.S. and Laj, C. (2005) Assessing the timing of greigite formation and the reliability of the Upper Olduvai polarity transition record from the Crostolo River, Italy. Geophysical Research Letters, 32, L05307, 14.
Roberts, A.P., Chang, L., Rowan, C.J., Horng, C-S. and Florindo, F (2011) Magneticpropertiesof sedimentary greigite (Fe3S4): An update. Reviews of Geophysics, RG1002, 146.
Roldan, A., Santos-Carballa, D. and de Leeuw, N.H. (2013) A comparative DFT study of the mechanical and electronic properties of greigite Fe3S4 and magnetite Fe3O4 . Journal of Chemical Physics, 138, 204712.
Rowan, C.J., Roberts, A.P. and Broadbent, T. (2009) Paleomagnetic smoothing and magnetic enhancement in marine sediments due to prolonged early diagenetic growth of greigite. Earth and Planetary Science Letters, 277, 223235.
Russell, M.J. and Martin, W. (2004) The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Sciences, 29, 358363.
Russell, M.J., Hall, A.J., Boyce, A.J. and Fallick, A.E. (2005) On hydrothermal convection systems and the emergence of life. Economic Geology, 100, 419438.
Schoonen, M.A.A. and Barnes, H.L. (1991) Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100 °C. Geochimica et Cosmochimica Acta, 55, 15051514.
Schuler, D. and Frankel, R.B. (1999) Bacterial magneto-somes: microbiology, biomineralization and biotech-nological applications. Applied Microbiology and Biotechnology, 52, 464473.
Skinner, B.J., Erd, R.C. and Grimaldi, F.S. (1964) Greigite, the thio-spinel of iron; a new mineral. American Mineralogist, 49, 543555.
Snowball, I.F. and Torii, M. (1999) Incidence and significance of ferrimagnetic iron sulphides in Quaternary studies. Pp. 199230 in: Quaternary Climates and Magnetism (Maher, B.A. and R. Thompson, editors). Cambridge University Press, Cambridge, UK.
Stadelmann, P. (2003) Image analysis and simulation software in transmission electron microscopy. Microscopy and Microanalysis, 9, 6061.
van der Laan, G. (2013) Applications of soft X-ray magnetic dichroism. Journal of Physics, Conference Series, 430, 012127, 120.
van der Laan, G. and Figueroa, A.I. (2014) X-ray magnetic circular dichroism — a versatile tool to study magnetism. Coordination Chemistry Reviews, 277–278, 95129.
van der Laan, G. and Thole, B.T (1991) Strong magnetic X-ray dichroism in 2p absorption spectra of 3d transition metal ions. Physical Review B, 43, 1340113411.
van der Laan, G., Zaanen, J., Sawatsky, G.A., Karnatak, R. and Esteva, J-M. (1986) Comparison of X-ray absorption spectroscopy with X-ray photoemission of nickel dihalides and NiO. Physical Review B, 33, 42534264.
van der Laan, G., Henderson, C.M.B., Pattrick, R.A.D., Dhesi, S.S., Schofield, P.F., Dudzik, E. and Vaughan, D.J. (1999) Orbital polarization in NiFe2O4 measured by Ni-2p X-ray magnetic circular dichroism. Physical Review B, 59, 43144321.
Vanitha, P.V and O'Brien, P. (2008) Phase control in the synthesis of magnetic iron sulfide nanocrystals from a cubane-type Fe-S cluster. Journal of American Chemistry Society, 130, 1725617257.
Vasiliev, I., Franke, C., Meedijk, J.D., Dekkers, M.J., Langereis, C.R. and Krijgsman, W. (2008) Putative greigite magnetofossils from the Pliocene epoch. Nature Geoscience, 1, 782786.
Vaughan, D.J. and Craig, J.R. (1978) Mineral Chemistry of Metal Sulfides. Cambridge University Press, Cambridge.
Vaughan, D.J. and Craig, J.R. (1985) The crystal chemistry of iron-nickel thiospinels. American Mineralogist, 70, 10361043.
Vaughan, D.J. and Tossell, J.A. (1981) Electronic structure of thiospinel minerals: Results from MO calculations. American Mineralogist, 66, 12501253.
Vaughan, D.J., Burns, R.G. and Burns, V.M. (1971) Geochemistry and bonding of thiospinel minerals. Geochimica et Cosmochimica Acta, 35, 365381.
Wagner, T. and Cook, N.J. (1999) Carrollite and related minerals of the linnaeite group: Solid solutions and nomenclature in the light of new data from the Siegerland district, Germany. The Canadian Mineralogist, 37, 545558.
Wang, Y.S., Thomas, P.J. and O'Brien, P. (2006) Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. Journal of Physical Chemistry B, 110, 2141221415.
Yamaguchi, S. and Wada, H. (1970) Magnetic anisotropy of Fe3S4 as revealed by electron diffraction. Journal of Applied Physics, 41, 18731874.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Pattrick et al. supplementary material
Supplementary Fig 1

 Unknown (106 KB)
106 KB
UNKNOWN
Supplementary materials

Pattrick et al. supplementary material
Supplementary Fig 2

 Unknown (168 KB)
168 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed