Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T09:08:51.323Z Has data issue: false hasContentIssue false

Magnesiokoritnigite, Mg(AsO3OH)·H2O, from the Torrecillas mine, Iquique Province, Chile: the Mg-analogue of koritnigite

Published online by Cambridge University Press:  05 July 2018

A. R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
B. P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA
M. Dini
Affiliation:
Pasaje San Agustin 4045, La Serena, Chile
*
* E-mail: akampf@nhm.org

Abstract

The new mineral magnesiokoritnigite (IMA 2013-049), ideally Mg(AsO3OH)·H2O, was found at the Torrecillas mine, Salar Grande, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, chudobaite, halite, lavendulan, quartz and scorodite. Crystals of magnesiokoritnigite are colourless to pale-pink, thin to thick laths up to 2 mm long. Laths are elongated on [001], flattened on {010} and exhibit the forms {010}, {110}, {10}, {101}, {031} and {01}. The crystals also occur in dense deep-pink intergrowths. Crystals are transparent with a vitreous lustre. The mineral has a white streak, Mohs hardness of ∼3, brittle tenacity, conchoidal fracture and one perfect cleavage on {101}. The measured and calculated densities are 2.95(3) and 2.935 g cm– 3, respectively. Optically, magnesiokoritnigite is biaxial (+) with α = 1.579(1), β = 1.586(1) and γ = 1.620(1) (measured in white light). The measured 2V is 50(2)° and the calculated 2V is 50°. Dispersion is r < v, medium. The optical orientation is Yb; Z ^ c = 36° in obtuse β (note pseudomonoclinic symmetry). The mineral is non-pleochroic. The empirical formula, determined from electron-microprobe analyses, is (Mg0.94Cu0.03Mn0.02Ca0.01)Σ 1.00As0.96O5H3.19. Magnesiokoritnigite is triclinic, P, with a = 7.8702(7), b = 15.8081(6), c = 6.6389(14) Å, α = 90.814(6), β = 96.193(6), γ = 90.094(7)°, V = 821.06(19) Å3 and Z = 8. The eight strongest X-ray powder diffraction lines are [dobs Å (I)(hkl)]: 7.96(100)(020), 4.80(54)(101), 3.791(85)(10,210,1,31), 3.242(56)(02,1,012), 3.157(92)(21,30,230), 3.021(61)(11,141,21,221), 2.798(41)(02,032) and 1.908(43)(multiple). The structure, refined to R1 = 5.74% for 2360 Fo > 4σF reflections, shows magnesiokoritnigite to be isostructural with koritnigite and cobaltkoritnigite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381388.CrossRefGoogle Scholar
Cameron, E.M., Leybourne, M.I. and Palacios, C. (2007) Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42, 205218.Google Scholar
Gutiérrez, H. (1975) Informe sobre una rápida visita a la mina de arsénico nativo, Torrecillas. Instituto de Investigaciones Geoló gicas, Iquique, Chile.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Sciberras, M.J., Williams, P.A. and Dini, M. (2013) Leverettite from the Torrecillas mine, Iquique Provence, Chile: the Co-analogue of herbertsmithite Mineralogical Magazine, 77, 30473054.Google Scholar
Keller, P., Hess, H., Süsse, P., Schnorrer, G. and Dunn, P.J. (1979) Koritnigit, Zn[H2O|HOAsO3], ein neues Mineral aus Tsumeb, Südwestafrika. Tschermaks mineralogische und petrographische Mitteilungen, 26, 5158.Google Scholar
Keller, P., Hess, H. and Riffel, H. (1980) Die kristallstruktur von koritnigit, Zn[H2O|HOAsO3]. Neues Jahrbuch für Mineralogie, Abhandlungen, 138, 316332.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Mortimer, C., Saric, N. and Cáceres, R. (1971) Apuntes sobre algunas minas de la región costera de la provincia de Tarapacá. Instituto de Investigaciones Geoló gicas, Santiago de Chile, Chile.Google Scholar
Pimentel, F. (1978) Proyecto Arsenico Torrecillas. Instituto de Investigaciones Geoló gicas, Iquique, Chile.Google Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model "PAP". Pp. 31–75. in: Electron Probe Quantitation (K.F.J. Heinrich and D.E. Newbury, editors). Plenum Press, New York.Google Scholar
Schmetzer, K., Horn, W. and Medenbach, O. (1981) Uber Kobaltkoritnigit, (Co,Zn)[H2O|AsO3OH], ein neues Mineral, und Pitticit, Fe2O3·As2O5·9-10H2O, ein röntgenamorphes Fe-Arsenat-Hydrat. Neues Jahrbuch für Mineralogie, Monatshefte, 1974, 257266.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Zettler, V.F., Riffel, H., Hess, H. and Keller, P. (1979) Cobalthydrogenarsenat-monohydrat. Darstellung und Kristallstruktur. Zeitschrift für anorganische und allgemeine Chemie, 454, 134144.CrossRefGoogle Scholar