Skip to main content Accessibility help

Magmatic, hydrothermal and subsolidus evolution of the agpaitic nepheline syenites of the Sushina Hill Complex, India: implications for the metamorphism of peralkaline syenites

  • A. Chakrabarty (a1), R. H. Mitchell (a2), M. Ren (a3), P. K. Saha (a1), S. Pal (a1), K. L. Pruseth (a4) and A. K. Sen (a5)...


The Proterozoic Sushina Hill Complex is the only agpaitic complex, reported from India and is characterized by a eudialyte-rinkite-bearing nepheline syenite. The complex is considered a ‘metamorphosed agpaitic complex'. This study describes the mineral assemblages formed during successive stages of evolution from magmatic to hydrothermal stages and low-temperature subsolidus re-equilibration assemblage. The primary-late magmatic assemblage is characterized by albite, orthoclase, unaltered nepheline, zoned diopside-hedenbergite, rinkite, late magmatic eudialyte and magnesio-arfvedsonite formed at ∼700°C with maximum a SiO2 of 0.60. In contrast, a deuteric assemblage (400-348°C) is represented by aegirine-jadeite-rich clinopyroxene, post-magmatic eudialyte, sodalite, analcime and the decomposition assemblages formed after eudialyte with decreasing a SiO2 (0.52-0.48). A further low-temperature subsolidus assemblage (≤250°C) represented by late-forming natrolite could be either related to regressive stages of metamorphism or a continuum of the subsolidus processes. Considering the P/T range of the greenschist - lower-amphibolite facies of metamorphism it is evident that the incorporation of a jadeite component within pyroxene is related to a subsolidus process between ∼400°C and 348°C in a silica deficient environment. We emphasize that the deuteric fluid itself acted as an agent of metamorphism and the decomposition assemblage formed after eudialyte is retained even after metamorphism due to the convergence of subsolidus and metamorphic domains. The formation of jadeite-rich aegirine is not considered to result from metamorphism. Overall it is near-impossible to discern any bona fide metamorphic textures or mineral assemblages in these syenites which appear to preserve a relict mineralogy regardless of their occurrence in country rocks which have experienced greenschist - amphibolite facies metamorphism. The Sushina complex is very similar in this respect to the Norra Kärr complex (Sweden).


Corresponding author


Hide All
Adams, L.H. (1953) A note on the stability of jadeite. American Journal of Science, 251, 299308.
Adamson, O.J. (1944) The petrology of the Norra Kärr district. Geologiska Føreningen Stockholm Førhandlingar, 66, 113255.
Aiuppa, A. (2009) Degassing of halogens from basaltic volcanism: insights from volcanic gas observations. Chemical Geology, 263, 99109.
Aksenov, S.M., Rastsveteva, R.K., Mitchell, R.H. and Chakrabarty, A. (2014) Crystal Structure of Manganese-Rich variety of Eudialyte from Sushina Hill, India and Manganese Ordering in Eudialyte-group Minerals. Crystallography Reports, 59, 146—154.
Andersen, T. (1990) Melt-mineral-fluid interaction in peralkaline silicic intrusion in the Oslo rift, Southeast Norway. IV: fluid inclusions in the Sande nordmarkite. Norges Geologiske Undersøkelse Bulletin, 417, 4154.
Andersen, T., Erambert, M., Larsen, A.O. and Selbekk, R.S. (2010) Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magma. Journal of Petrology, 51, 23032325.
Armstrong, J.T. (1991) Quantitative elemental analysis of individual microparticles with electron beam instruments. Pp. 261-315 in: Electron Probe Quantificatio.(K.F.J. Heinrich and D.E. Newbury, editors). Plenum Press, New York & London.
Basu, S.K (1993) Alkaline-Carbonatite Complex in Precambrian of South Purulia Shear Zone, Eastern India: its characteristics and mineral potentialities. Indian Minerals, 47, 179194.
Bell, P.M. and Kalb, K. (1969) Stability ofOmphacite in the Absence of Excess Silica. Carnegie Institut. Washington, Annual Report, Directory Geophysics Laboratory 1967-1968, 9798
Chakrabarty, A. (2009) Petrogenesis of carbonatite and associated alkaline rocks, Purulia W.B., India.PhD Thesis, Department of Earth Sciences, Indian Institute of Technology Roorkee, India.
Chakrabarty, A. and Sen, A.K. (2010) Enigmatic association of the carbonatite and alkali-pyroxenite along the Northern Shear Zone: a saga of primary magmatic carbonatites. Journal of Geological Society of India, 74, 403–13.
Chakrabarty, A. and Sen, A.K. (2013) Geochronological constraints and tectonic implications of the alkaline rocks of South Purulia Shear Zone, W.B., India. Pp. 8688. in: 18th Convention of Indian Geological Congress & International Symposium “Minerals and Mining in India-The way forward, inclusive of cooperative mineral-based industries in SAARC countries” (extendedAbstract).
Chakrabarty, A., Sen, A.K. and Ghosh, T.K.(2009) Amphibole - A key indicator mineral for petrogenesis of carbonatite from Purulia, West Bengal, India. Mineralogy and Petrology, 95, 105—112.
Chakrabarty, A., Pruseth, K.L. and Sen, A.K. (2011) First report of eudialyte occurrence from the Sushina hill region, Purulia district, West Bengal. Journal of Geological Society of India, 77,1216.
Chakrabarty, A., Pruseth, K.L. and Sen, A.K. (2012) Composition and petrogenetic significance of the eudialyte group of minerals from Sushina, Purulia, West Bengal. Journal of Geological Society of India, 79, 449-159.
Chakrabarty, A., Mitchell, R.H., Ren, M., Sen, A.K. and Pruseth, K.L. (2013) Rinkite, cerianite-(Ce), and hingganite-(Ce) in syenite gneisses from the Sushina Hill Complex, India: occurrence, compositional data petrogenetic significance. Mineralogical Magazine, 77,31373153.
Chatterjee, N. and Ghose, N.C. (2011) Extensive Early Neoproterozoic high-grade metamorphism in North Chotanagpur Gneissic Complex of the Central Indian Tectonic Zone. Gondwana Research, 20, 362—379.
Chatterjee, N., Crowley, J.L. and Ghose, N.C. (2008) Geochronology of the 1.55 Ga Bengal anorthosite and Grenvillian metamorphism in the Chotanagpur gneissic complex, eastern India. Precambrian Research, 161, 303316.
Chatterjee, N., Banerjee, M., Bhattacharya, A. and Maji, A.K. (2010) Monazite chronology, metamorphism— anatexis and tectonic relevance of the mid-Neoproterozoic Eastern Indian Tectonic Zone. Precambrian Research, 179, 99120.
Coleman, R.G. (1961) Jadeite deposits of the Clear Creek area, New Idria District, San Benito County, California. Journal of Petrology, 2, 209247.
Curtis, L.W. and Gittins, 1 (1979) Aluminous and titaniferous clinopyroxenes from regionall. metamorphosed agpaitic rocks in central Labrador. Journal of Petrology, 20, 165186.
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to Rock-forming Minerals. Longman Scientific and Technical, England, pp. 31—46.
Droop, G.T.R. (1987) A general equation for estimation of Fe + concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineralogical Magazine, 51, 431435.
Duke, N.A. and Edgar, A.D. (1977) Petrology of the Blue Mountain and Bigwood felsic alkaline complexes of the Grenville province of Ontario. Canadian Journal of Earth Sciences, 14, 515538.
Dutrow, B.L., Travis, B.J., Gable, C.W.and Henry, D.J. (2001) Coupled heat and silica transport associated with dyke intrusion into sedimentary rock: effects on isotherm location and permeability evolution. Geochimica et Cosmochimica Acta, 65, 37493767.
Fall, A., Bodnar, R.J., Szabó, C. and Pál-Molnár, E. (2007) Fluid evolution in the nepheline syenites of the Ditrau Alkaline Massif, Transylvania, Romania. Lithos, 95, 331345.
Floor, P. (1974) Alkaline gneisses. Pp. 124-142 in: The Alkaline Rock. (H. Sørensen, editor). John & Wiley, New York.
Giehl, C., Marks, M. and Novak, M. (2013) Phase relations and liquid line of descent of an iron-rich peralkaline phonolitic melt: an experimental study. Contributions to Mineralogy and Petrology, 165, 283304.
Giehl, C., Marks, M.A.W.and Novak, M. (2014) An experimental study on the influence of fluorine and chlorine on phase relations in peralkaline phonolitic melts. Contributions to Mineralogy and Petrology, 167, 121.
Goswami, B. and Basu, S.K. (2013) Metamorphism of Proterozoic agpaitic nepheline syenite gneiss from North Singhbhum Mobile Belt, eastern India. Mineralogy and Petrology, 107, 517538.
Hamilton, D.L. (1961) Nephelines as crystallization temperature indicators. Journal of Geology, 69, 321329.
Hansteen, T.H. and Burke, E.A.J. (1990) Melt-mineral-fluid interaction in peralkaline silicic intrusions in the Oslo Rift, Southeast Norway; II, High-temperature fluid inclusions in the Eikeren-Skrim complex. Norges Geologiske Undersøkelse Bulletin, 417, 1532.
Harris, C. and Rickard, R.S. (1987) Rare-earth-rich eudialyte and dalyite from a peralkaline granite dyke at Strumsvola, Dronning Maud Land, Antarctica. The Canadian Mineralogist, 25, 755—762.
Henderson, C.M.B., Hamilton, D.L. and Waters, J.P. (2014) Phase equilibrium in NaAlSiO4 - KAlSiO4 - SiO2 -H2O at 100 MPa pressure: equilibrium leucite composition and the enigma of primary analcime iblairmortites revisited. Mineralogical Magazine, 78, 171201.
Hlabse, T.H. and Kleppa, O.J. (1968) The thermochemistry of jadeite. American Mineralogist, 53, 12811292.
Holland, T.J.B. and Powell, R. (1998) An internally consistent thermodynamic data set for phases of petrologic interest. Journal ofMetamorphic Geology, 16, 309343.
Holm, R.F. (1971) Some garnets, pyroxenes and amphi-boles from nepheline gneisses in Ghana. American Mineralogist, 56, 21112122.
Iwasaki, M. (1960) Clinopyroxenes intermediate between jadeite and aegirine from Suberidani, Tokusima Prefecture. Journal Geological Society of Japan, 66, 334340.
Karup-Møller, S. (1969) Xonotlite-, pectolite- and natrolite-bearing fracture veins in volcanic rocks from Nuussuaq, West Greenland. Gronlnads Geologiske Undersøgelse, 80, 4—20.
Khomyakov, A. (1995) Mineralogy of Hyperagpaitic Alkaline Rocks. Clarendon Press, Oxford, UK, 222 pp.
Koark, H.J. (1960) Zum gefügeverhalten des nephelins in zwei vorkommen alkaliner kristaliner schiefer. Bulletin of the Geological Institution of the University of Upsala, 39, 131.
Koark, H.J. (1968) Zu hülle, inhalt, gefüge und alter des alkaligesteinsvorkommen von Norra Kärr im südlichen mittelschweden. Geologiska Föreningen i Stockholm Förhandlingar, 91, 159184.
Kogarko, L.N., Lazutkina, L.N. and Romanchev, B.P. (1982) The origin of eudyalite mineralization. Translations from Geokhimiya, 10, 1415—1432.
Kontak, D.J. and Corey, M. (1988) Metasomatic origin of spessartine-rich garnet in the South Mountain Batholith, Nova Scotia. The Canadian Mineralogist, 26,315334.
Kornprobst, J., Cantagrel, J.-M., Fabries, J., Lasserre, M., Rollet, M. and Soba, D. (1976) Existence, au Cameroun, d'un magmatisme alcalin panafricain ou plus ancien, la syénite néphélinique à mboziite de Nkonglong — comparison avec les roches alcalines connues dans la meme region. Bulletin de la Société Géologique de France, 18, 1295—1305.
Le Maitre, R.W. (2002) Igneous Rocks: A Classification and Glossary of Terms. Cambridge UP, UK.
Lumbers, S.B. (1976) Omphacite-bearing nepheline syenite in an anorthosite complex, Grenville, Province of Ontario. Geological Association of Canada/Mineralogical Association of Canada Joint Annual Meeting, Program with Abstracts, 1, 73.
Mahato, A.C., Ren, M., Chakrabarty, A., Sen, A.K., Rajesh, H.M. and Shindo, K. (2013) Reconstruction of magmatic to deuteric stages of eudialyte-bearing Sushina syenite gneiss West Bengal, India. Journal of Indian Geological Congress, 5, 77—93.
Maji, A.K., Goon, S., Bhattacharya, A., Mishra, B., Mahato, S. and Bernhardt, H.J. (2008) Proterozoic polyphase metamorphism in the Chhotanagpur Gneissic Complex (India), and implication for transcontinental Gondwanaland correlation. Precambrian Research, 162, 385402.
Markl, G. and Baumgartner, L. (2002) pH changes in peralkaline late-magmatic fluids. Contributions to Mineralogy and Petrology, 144, 331—346.
Markl, G., Marks, M., Schwinn, G. and Sommer, S. (2001) Phase equilibrium constraints of intensive crystallization parameters of the Ilímaussaq Complex, South Greenland. Journal of Petrology, 42,22312258.
Markl, G., Marks, M.A.W.and Frost, B.R. (2010) On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. Journal of Petrology, 51, 18311847.
Marks, M.A.W., Schilling, J., Coulson, I.M., Wenzel, T. and Markl, G. (2008) The alkaline-peralkaline Tamazeght complex, High Atlas Mountains, Morocco: mineral chemistry and petrological con-straints for derivation from a compositionally heterogeneous mantle source. Journal of Petrology, 49, 10971131.
Marks, M.A.W., Hettmann, K., Schilling, J., Frost, B.R. and Markl, G. (2011)The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology, 52, 439455.
Mitchell, R.H. (1996) Classification of undersaturated and related alkaline rocks. Pp. 1—22 in: Undersaturated Alkaline Rocks: Mineralogy, Petrogenesis, and Economic Potentia. (R.H. Mitchell, editor). Short Couse, 24, Mineralogical Association of Canada.
Mitchell, R.H. and Chakrabarty, A. (2011) Peralkaline Nepheline Gneiss from Purulia, West Bengal, India: Paragenesis of a New Eudialyte Group Mineral PERALKCARB 2011. University of Tübingen, Germany (extended abstract), 100—102.
Mitchell, R.H. and Chakrabarty, A. (2012) Paragenesis and decomposition assemblage of a Mn-rich eudialyte from the Sushina peralkaline nepheline syenite gneiss, Paschim Bnaga, India. Lithos, 152, 218226.
Mitchell, R.H. and Liferovich, R.P. (2006) Subsolidus deuteric/hydrothermal alteration of eudialyte in lujav-rite from the Pilansberg alkaline complex, South Africa. Lithos, 91, 352372.
Mogessie, A., Ettinger, K., Leake, B.E. and Tessardi, R. (2001) AMPH-IMA97: a hypercard program to determine the name of an amphibole from electron microprobe and wet chemical analyses. Computers & Geosciences, 27, 11691178.
Nachit, H., Ibhi, A., Abia, E.H. and Ohoud, M.B. (2005) Discrimination between primary magmatic biotites reequilibrated biotites and neoformed biotites. Comptes Rendus, 337, 14151420.
Olivo, G.R. and Williams-Jones, A.E. (1999) Hydrothermal REE-rich eudialyte from the Pilanesberg complex, South Africa. The Canadian Mineralogist, 37, 653663.
Perchuk, L.L. and Ryabchikov, I.D. (1968) Mineral equilibria in the system nepheline-alkali feldspar-plagioclase and their petrological significance. Journal of Petrology, 9, 123167.
Pfaff, K., Wenzel, T., Schilling, J., Marks, M. and Markl, G. (2010) A fast and easy-to-use approach to cation site assignment for eudialyte-group minerals. Neues Jahrbuch für Mineralogie, Abhandlungen, 187, 6981.
Platt, R.G. (1996) Nepheline syenite complexes: an overview. Pp. 63—99 in:Undersaturated Alkaline Rocks: Mineralogy, Petrogenesis, and Economic Potentia.(R.H. Mitchell, editor). Short Couse 24, Mineralogical Association of Canada.
Popp, R.K. and Gilbert, M.C. (1972) Stability of acmite-jadeite pyroxene at low pressure. American Mineralogist, 57, 12101231.
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3175 in: Electron Probe Quantitatio.(K.F.J. Heinrich and D.E. Newbury, editors). Plenum Press, New York.
Ratschbacher, B.C., Marks, M.A.W., Bons, P.D., Wenzel, T. and Markl, G. (2015)Emplacement and geochem-ical evolution of highly evolved syenites investigated by a combined structural and geochemical field study: the lujavrites of the Ilímaussaq complex, SW Greenland. Lithos, 231, 6276.
Reider, M., Cavazzini, G., D'Yakonov, Y.S., Frank-kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., et al. (1998) Nomenclature of the micas. The Canadian Mineralogist, 36, 905912.
Rekha, S., Upadhyay, D., Bhattacharya, A., Kooijman, E., Goon, S., Mahato, S. and Pant, N.C. (2011) Lithostructural and chronological constraints for tectonic restoration of Proterozoic accretion in the Eastern Indian Precambrian shield. Precambrian Research, 187,313333.
Robertson, E.C., Birch, F. and Macdonald, G.J.F. (1957) Experimental determination of jadeite stability relations to 25,000 bars. American Journal of Science, 255, 115137.
Saha, A.K. (1994) CrustalEvolution of Singhbhum-North Orissa, Eastern India.Memoir Geological Society of India, 27, 341.
Salvi, S. and Williams-Jones, A.E. (1995) Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton Quebec — Labrador, Canada. American Mineralogist, 80, 10311040.
Sanyal, S. and Sengupta, P. (2012) Metamorphic evolution of the Chotanagpur Granite Gneiss Complex of East Indian Shield: current status. Pp. 117-145 in: Palaeoproterozoic of Indi.(R. Mazumder and D. Saha, editors). Special Publications 365, Geological Society, London.
Schilling, J., Wu, F.-Y., McCammon, C., Wenzel, T., Marks, M.A.W., Pfaff, K., Jacob, D.E. and Markl, G. (2011a) The compositional variability of eudialyte-group minerals. Mineralogical Magazine, 75, 87115.
Schilling, J., Marks, M.A.W., Wenzel, T., Vennemann, T., Horvath, L., Tarassoff, P., Jacob, D.E. and Markl, G. (2011b) The magmatic to hydrothermal evolution of the intrusive Mont Saint-Hilaire complex: insights into the late-stage evolution of peralkaline rocks. Journal of Petrology, 52, 21472185.
Schönenberger, J. and Markl, G. (2008) The magmatic and fluid evolution of the Motzfeldt intrusion in South Greenland: insights into the formation of agpaitic and miaskitic rocks. Journal of Petrology, 49, 15491577.
Sheard, E.R., Williams-Jones, A.E., Heiligmann, M., Pederson, C. and Trueman, D.L. (2012) Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake Rare Metal Deposit, Northwest Territories, Canada. Economic Geology, 107, 81104.
Sjöqvist, A.S.L., Cornell, D.H., Andersen, T., Erambert, M., Ek, M. and Leijd, M. (2013) Three compositional varieties of rare-earth element ore: eudialyte-group minerals from the Norra Kärr Alkaline Complex, Southern Sweden. Minerals, 3, 94120.
Sørensen, H. (1992) Agpaitic nepheline syenites: a potential of rare elements. Applied Geochemistry, 7,417-27.
Sørensen, H. (1997) The agpaitic rocks — an overview. Mineralogical Magazine, 61, 485498.
Tilley, C.E. (1954) Nepheline-alkali feldspar paragenesis. American Journal of Science, 252, 6575.
Tilley, C.E. (1957) Problems of alkali rock genesis. 13th William Smith Lecture,323360.
Tindle, A.G. and Webb, P.C. (1990) Estimation of lithium contents in trioctahedral micas using microprobe data: application to micas from granitic rocks. European Journal of Mineralogy, 2, 595610.
Tischendorf, G., Förster, H.-J., Gottesmann, B. and Rieder, M. (2007) True and brittle micas: composition and solid-solution series. Mineralogical Magazine, 71, 285—320.
Upadhyay, D. (2012) Alteration of plagioclase to nepheline in the Khariar alkaline complex, SE India: constraints on metasomatic replacement reaction mechanisms. Lithos, 155, 19—29.
Ussing, N.V. (1912) Geology of the country around Julianehaab, Greenland. Meddelelser om Grønland, 38, 1376.
von, Eckermann H. (1968) New contributions to theinterpretation of the genesis of the norra kärr alkalineRelatively aluminous alkali pyroxene in nephelin body in southern Sweden. Lithos, 1, 7688.
Woolley, A.R., Platt, R.G. and Eby, N.E. (1996) syenites from Malawi: mineralogical response t.
Vuorinen, J.H., Hålenius, U., Whitehouse, M.J., Mansfeld, J. and Skelton, A.D.L. (2005) Compositional variations (major and trace elements) of clinopyroxene and Ti-andradite from pyroxenite,ijolite and nepheline syenite, Alnö Island, Sweden Lithos, 81, 5577
Woolley, A.R., Platt, R.G. and Eby, N.E. (1996) Relatively aluminous alkali pyroxene in nepheline syenites from Malawi: mineralogical response to metamorphism in alkaline rocks. The Canadian Mineralogist, 34, 423–434.
Yoder, H.S. and Weir, C.E. (1951) Change of free energy with pressure of the reaction nepheline + albite = 2 jadeite. American Journal of Science, 249, 683–694.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed