Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T14:55:36.888Z Has data issue: false hasContentIssue false

Macro- to nanoscale study of the effect of aqueous sulphate on calcite growth

Published online by Cambridge University Press:  05 July 2018

A. I. Vavouraki*
Affiliation:
Department of Chemical Engineering, University of Patras, Karatheodori 1, 26500 Rio, Patras, Greece Institute of Chemical Engineering and High Temperature Chemical Processes, Stadiou Str., Platani, P.O. Box 1414, GR-26504, Patras, Hellas, Greece Géochimie et Biogéochimie Expérimentale, Université Paul Sabatier, CNRS-UMR 5563, 14 rue Edouard Belin, 31400 Toulouse, France
C. V. Putnis
Affiliation:
Institut für Mineralogie, Westfälische Wilhelms, Universität Münster, Corrensstr. 24, D-48149 Münster, Germany
A. Putnis
Affiliation:
Institut für Mineralogie, Westfälische Wilhelms, Universität Münster, Corrensstr. 24, D-48149 Münster, Germany
E. H. Oelkers
Affiliation:
Géochimie et Biogéochimie Expérimentale, Université Paul Sabatier, CNRS-UMR 5563, 14 rue Edouard Belin, 31400 Toulouse, France
P. G. Koutsoukos
Affiliation:
Department of Chemical Engineering, University of Patras, Karatheodori 1, 26500 Rio, Patras, Greece Institute of Chemical Engineering and High Temperature Chemical Processes, Stadiou Str., Platani, P.O. Box 1414, GR-26504, Patras, Hellas, Greece

Abstract

Calcite growth rates were measured in the presence of sulphate using mixed-flow reactors and in situ Atomic Force Microscopy. Preliminary observations reveal that the kinetics and mechanism of the calcite growth was altered by the presence of sulphate. Calcite growth rates in the presence of sulphate (≥ mM) were decreased and two-dimensional nuclei tend to grow on top of existing nuclei, rather than spreading. The height of new nuclei was ~4 Å, 1 Å greater than that of pure calcite growth. This difference reflects the incorporation of tetrahedral SO2-4 anions into the calcite lattice.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astilleros, J.M., Pina, CM., Fernandez-Diaz, L. and Putnis, A. (2000) The effect of barium on calcite ﹛1014﹜ surfaces during growth. Geochimica et Cosmochimica Ada, 64, 2965–2972.CrossRefGoogle Scholar
Berner, R. (1978) Rate control of mineral dissolution under earth surface conditions. American Journal of Science, 278, 1235–1252.CrossRefGoogle Scholar
Cheng, L., Fenter, P., Sturchio, N.C., Zhong, Z. and Bedzyk, MJ. (1999) X-ray standing wave study of arsenite incorporation at the calcite surface. Geochimica et Cosmochimica Ada, 63, 3153–3157.CrossRefGoogle Scholar
Frisia, S., Borsato, A., Fairchild, I.J. and Susini, J. (2005) Variations in atmospheric sulphate recorded in stalagmites by synchrotron micro-XRF and XANES analyses. Earth and Planetary Science Letters, 235, 729–740.CrossRefGoogle Scholar
Gratz, A.J., Hillner, P.E. and Hansma, P.K. (1993) Step dynamics and spiral growth on calcite. Geochimica et Cosmochimica Ada, 57, 491–495.CrossRefGoogle Scholar
Hemming, G.M., Reeder, RJ. and Hart, S.R. (1998) Growth-step-selective incorporation of boron on the calcite surface. Geochimica et Cosmochimica Ada, 62, 2915–2922.CrossRefGoogle Scholar
Kralj, D., Kontrec, J., Brečević, L., Falini, G. and Nöthig-Laslo, V. (2004) Effect of inorganic anions on the morphology and structure of magnesium calcite. Chemistry - A European Journal, 10, 1647–1656.CrossRefGoogle ScholarPubMed
Morse, J.W., Arvidson, R.S. and Lüttge, A. (2007) Calcium carbonate formation and dissolution. Chemical Reviews, 107, 342–381.CrossRefGoogle ScholarPubMed
Parkhurst, D.L. and Appelo, C.A.J. (1999) User's guide to PHREEQC (Version 2)—a computer program for speciation, reaction-path, advedive-transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigations Report, 99–4259, 312 pp.Google Scholar
Pokrovsky, O.S. and Schott, J. (1999) Processes at the magnesium-bearing carbonates/solution interface. II. Kinetics and mechanism of magnesite dissolution. Geochimica et Cosmochimica Ada, 63, 881–897.Google Scholar
Pokrovsky, O.S., Golubev, S.V. and Schott, J. (2005) Dissolution kinetics of calcite, dolomite and magnesite at 25°C and 0 to 50 atm pCO2 . Chemical Geology, 217, 239–255.CrossRefGoogle Scholar
Prieto, M., Putnis, A., Fernandez-Diaz, L. and Lopez-Andres, S. (1994) Metastability in diffusing-reacting systems. Journal of Crystal Growth, 142, 225–235.CrossRefGoogle Scholar
Sánchez-Pastor, N., Pina, CM., Fernandez-Diaz, L. and Astilleros, J.M. (2006) The effect of COf” on the growth of barite ﹛001﹜ and ﹛210﹜ surfaces: An AFM study. Surface Science, 600, 1369–1381.CrossRefGoogle Scholar
Schacht, U., Wallmann, K., Kutterolf, S. and Schmidt, M. (2008) Volcanogenic sediment—seawater interactions and the geochemistry of pore waters. Chemical Geology, 249, 321–338.CrossRefGoogle Scholar
Shtukenberg, A.G., Astilleros, J.M. and Putnis A. (2005) Nanoscale observations of the epitaxial growth of hashemite on barite (001). Surface Science, 590, 212–223.CrossRefGoogle Scholar
Takano, B. (1985) Geochemical implications of sulfate in sedimentary rocks. Chemical Geology, 49, 393–403.CrossRefGoogle Scholar