Skip to main content Accessibility help

Lucchesiite, CaFe2+ 3Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup

  • Ferdinando Bosi (a1), Henrik Skogby (a2), Marco E. Ciriotti (a3), Petr Gadas (a4), Milan Novák (a4), Jan Cempírek (a4), Dalibor Všianský (a4) and Jan Filip (a5)...


Lucchesiite, CaFe3 2+Al6(Si6O18)(BO3)3(OH)3O, is a new mineral of the tourmaline supergroup. It occurs in the Ratnapura District, Sri Lanka (6°35'N, 80°35'E), most probably from pegmatites and in Mirošov near Strážek, western Moravia, Czech Republic, (49°27'49.38"N, 16°9'54.34"E) in anatectic pegmatite contaminated by host calc-silicate rock. Crystals are black with a vitreous lustre, conchoidal fracture and grey streak. Lucchesiite has a Mohs hardnessof ∼7 and a calculated density of 3.209 g/cm3 (Sri Lanka) to 3.243 g/cm3 (Czech Republic). In plane-polarized light, lucchesiite is pleochroic (O = very dark brown and E = light brown) and uniaxial (–). Lucchesiite is rhombohedral, space group R3m, a ≈ 16.00 Å, c ≈ 7.21 Å, V ≈ 1599.9 Å3, Z = 3. The crystal structure of lucchesiite was refined to R1 ≈ 1.5% using ∼2000 unique reflections collected with MoKα X-ray intensity data. Crystal-chemical analysis for the Sri Lanka (holotype) and Czech Republic (cotype) samples resulted in the empirical formulae, respectively: X(Ca0.69Na0.30K0.02)∑1.01 Y(Fe1.44 2+Mg0.72Al0.48Ti0.33 4+V0.02 3+Mn0.01 3+Zn0.01)∑3.00 Z(Al4.74Mg1.01Fe0.25 3+)∑6.00[T(Si5.85Al0.15)∑6.00O18](BO3)3 V(OH)3 W[O0.69F0.24(OH)0.07]∑1.00and X(Ca0.49Na0.450.05 K0.01)∑1.00 Y(Fe1.14 2+Fe0.95 3+Mg0.42Al0.37Mn0.03Ti0.08 4+Zn0.01)∑3.00 Z(Al5.11Fe0.38 3+Mg0.52)∑6.00[T(Si5.88Al0.12)∑6.00O18](BO3)3 V[(OH)2.66O0.34]∑3.00 W(O0.94F0.06)∑1.00.

Lucchesiite is an oxy-species belonging to the calcic group of the tourmaline supergroup. The closest end-member composition of a valid tourmaline species is that of feruvite, to which lucchesiite is ideally related by the heterovalent coupled substitution ZAl3++O1O2–ZMg2+ + O1(OH)1–. The new mineral was approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA 2015-043).


Corresponding author


Hide All
Andreozzi, G.B., Bosi, F. and Longo, M. (2008) Linking Mössbauer and structural parameters in elbaite-schorl-dravite tourmalines. American Mineralogist, 93, 658666.
Bačík, P., Cempírek, J., Uher, P., Novák, M., Ozdín, D., Filip, J., Škoda, R., Breiter, K., Klementová, M. and Ďuďa, R. (2013) Oxy-schorl, Na(Fe2 +2Al) Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Pribyslavice, Czech Republic. American Mineralogist, 98, 485492.
Bosi, F. (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. Mineralogical Magazine, 74, 10371044.
Bosi, F. (2013) Bond-valence constraints around the O1 site of tourmaline. Mineralogical Magazine, 77, 343351.
Bosi, F. and Lucchesi, S. (2004) Crystal chemistry of the schorl-dravite series. European Journal of Mineralogy, 16, 335344.
Bosi, F. and Lucchesi, S. (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. American Mineralogist, 92, 10541063.
Bosi, F. and Skogby, H. (2013) Oxy-dravite, Na(Al2Mg) (Al5Mg)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 14421448.
Bosi, F., Balic-Zunic, T. and Surour, A.A. (2010) Crystal structure analysis of four tourmalines from the Cleopatra's Mines (Egypt) and Jabal Zalm (Saudi Arabia), and the role of Al in the tourmaline group. American Mineralogist, 95, 510518.
Bosi, F., Reznitskii, L. and Skogby, H. (2012a) Oxy-chromium-dravite, NaCr3(Cr4Mg2)(Si6O 18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 97, 20242030.
Bosi, F., Skogby, H., Agrosì, G. and Scandale, E. (2012b) Tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d'Oggi, San Pietro in Campo, island of Elba, Italy. American Mineralogist, 97, 989994.
Bosi, F., Reznitskii, L. and Sklyarov, E.V. (2013a) Oxy- vanadium-dravite, NaV3(V4Mg2)(Si6O18)(BO3)3(OH)3O: crystal structure and redefinition of the 'vanadium-dravite' tourmaline. American Mineralogist, 98, 501505.
Bosi, F., Andreozzi, G.B., Skogby, H., Lussier, A.J., Abdu, Y and Hawthorne, F.C. (2013b) Fluor-elbaite, Na(Li1. 5Al1. 5)Al6(Si6O18)(BO3)3(OH)3F, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 297303.
Bosi, F., Skogby, H., Reznitskii, L. and Hålenius, U. (2014a) Vanadio-oxy-dravite, NaV3(Al4Mg2)(Si6O18) (BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 218224.
Bosi, F., Reznitskii, L., Skogby, H. and Hålenius, U. (2014b) Vanadio-oxy-chromium-dravite, NaV3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 11551162.
Bosi, F., Andreozzi, G.B., Agrosì, G. and Scandale, E. (2015a) Fluor-tsilaisite, NaMn3Al6(Si6O18) (BO3)3(OH)3F, a new tourmaline from San Piero in Campo (Elba, Italy) and new data on tsilaisitic tourmaline from the holotype specimen locality. Mineralogical Magazine, 79, 89101.
Bosi, F., Andreozzi, G.B., Hålenius, U. and Skogby, H. (2015b) Experimental evidence for partial Fe +disorder at the Yand Z sites of tourmaline: a combined EMP, SREF, MS, IR and OAS study of schorl. Mineralogical Magazine, 79, 515528.
Bosi, F., Skogby, H., Lazor, P., Reznitskii, L. (2015c) Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study. Physics and Chemistry of Minerals, 42, 441–53.
Cempírek, J., Houzar, S., Novák, M., Groat, L.A., Selway, J.B. and Šrein, V (2013) Crystal structure and compositional evolution of vanadium-rich oxy-dravite from graphite quartzite at Bítovánky, Czech Republic. Journal ofGeosciences, 58, 149162.
Clark, C.M., Hawthorne, F.C. and Ottolini, L. (2011) Fluor-dravite, NaMg3Al6Si6O18(BO3)3(OH)3F, a new mineral species of the tourmaline group from the Crabtree emerald mine, Mitchell County, North Carolina: description and crystal structure. The Canadian Mineralogist, 49, 5762.
Dahanayake, K. (1980) Modes of occurrence and provenance of gemstones of Sri Lanka. Mineralium Deposita, 15, 8186.
Demirel, S., Gonciioglu, M.C., Topuz, G. and Isik, Y (2009) Geology and chemical variations in tourmaline from the quartz-tourmaline breccias within the Kerkenez granite-monzonite Massif, Central Anatolian Crystalline complex, Turkey. The Canadian Mineralogist, 47, 787799.
Dissanayake, C.B. and Rupasinghe, M.S. (1993) A prospectors’ guide map to the gem deposits of Sri Lanka. Gems and Gemology, 29, 173181.
Ertl, A., Hughes, J.M., Pertlik, F., Foit, F.F. Jr., Wright, S.E., Brandstatter, F andMarler, B. (2002) Polyhedron distortions in tourmaline. The Canadian Mineralogist, 40, 153162.
Ertl, A., Baksheev, I.A., Giester, G., Lengauer, C.L., Prokofiev, V.Yu. and Zorina, L.D. (2016a) Bosiite, NaFe33+(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new ferric member of the tourmaline supergroup from the Darasun gold deposit, Transbaikalia, Russia. European Journal of Mineralogy, 28, 581591.
Ertl, A., Kolitsch, U., Dyar, M.D., Meyer, H.-P., Rossman, G.R., Henry, D.J., Prem, M., Ludwig, T., Nasdala, L., Lengauer, C.L., Tillmanns, E. and Niedemayr, G. (2016b) Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities. European Journal of Mineralogy, 28, 163177.
Filip, J., Bosi, F., Novák, M., Skogby, H., Tuček, J., Čuda, J. and Wildner, M. (2012) Redox processes of iron in the tourmaline structure: example of the high-temperature treatment of Fe +-rich schorl. Geochimica et Cosmochimica Acta, 86, 239256.
Foit, F.F. Jr. (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships. American Mineralogist, 74, 422431.
Gadas, P., Novák, M., Cempírek, J., Filip, J., Vašinová Galiová, M., Groat, L.A. and Všianský, D. (2014) Mineral assemblages, compositional variation, and crystal structure of feruvitic tourmaline from a contaminated anatectic pegmatite at Mirošov near Strážek, Moldanubian Zone, Czech Republic. The Canadian Mineralogist, 52, 285301.
Gebert, W. and Zemann, J. (1965) Messung des Ultrarot-Pleochroismus von Mineralen II. Der Pleochroismus der OH-Streckfrequenz in Turmalin. Neues Jahrbuch für Mineralogie, Monatshefte, 8, 232235.
Gonzales-Carreño, T., Fernández, M. and Sanz, J. (1988) Infrared and electron microprobe analysis of tourmaline. Physics and Chemistry of Minerals, 15, 452–60.
Grice, J.D. and Ercit, T.S. (1993) Ordering of Fe and Mg in the tourmaline crystal structure: the correct formula. Neues Jahrbuch für Mineralogie, Abhandlungen, 165, 245266.
Grice, J.D. and Robinson, G.W. (1989) Feruvite, a new member of the tourmaline group, and its crystal structure. The Canadian Mineralogist, 27, 199203.
Hawthorne, F.C. (1996) Structural mechanisms for light-element variations in tourmaline. The Canadian Mineralogist, 34, 123132.
Hawthorne, F.C. (2002) Bond-valence constraints on the chemical composition of tourmaline. The Canadian Mineralogist, 40, 789797.
Hawthorne, F.C. and Henry, D. (1999) Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11, 201215.
Henry, D. J. and Dutrow, B.L. (2011) The incorporation of fluorine in tourmaline: Internal crystallographic controls or external environmental influences? The Canadian Mineralogist, 49, 4156.
Henry, D.J., Novák, M., Hawthorne, EC, Ertl, A., Dutrow, B., Uher, P. and Pezzotta, E (2011) Nomenclature of the tourmaline supergroup minerals. American Mineralogist, 96, 895913.
Herat, J.W. (1984) Geology and occurrence of gems in Sri Lanka. Journal of Natural Sciences Council of Sri Lanka, 12, 257271.
Holland, T.J.B. and Redfern, S.A.T (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.
Lussier, A.J., Ball, N.A., Hawthorne, EC, Henry, D.J., Shimizu, R., Ogasawara, Y and Ota, T (2016) Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure. American Mineralogist, 101, 355361.
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV: the compatibility concept and its application. The Canadian Mineralogist, 19, 441450.
Mendis, D.P.J., Rupasinghe, M.S. and Dissanayake, C.B. (1993) Application of structural geology in exploration for gem deposits of Sri Lanka. Bulletin of Geological Society of Finland, 65, 31–0.
Munasinghe, T and Dissanayake, C.B. (1981) The origin of gemstones in Sri Lanka. Economic Geology, 76, 12161225.
Nishio-Hamane, D., Minakawa, T., Yamaura, J., Oyama, T., Ohnishi, M. and Shimobayashi, N. (2014) Adachiite, a Si—poor member of the tourmaline supergroup from the Kiura mine, Oita Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 109, 7478.
Novák, M., Povondra, P. and Selway, J.B. (2004) Schorl-oxy-schorl to dravite-oxydravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. European Journal
Novák, M., Škoda, R., Filip, J., Macek, I. and Vaculovič, T. (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Trebic Pluton, Czech Republic; electron microprobe, Mössbauer and LA-ICP-MS study. The Canadian Mineralogist, 49, 359380.
Novák, M., Ertl, A., Povondra, P., Galiová, M.V., Rossman, G.R., Pristacz, H., Prem, M., Giester, G., Gadas, P. and Škoda, R. (2013a) Darrellhenryite, Na(LiAl2)Al6(BO3)3Si6O18(OH)3O, a new mineral from the tourmaline supergroup. American Mineralogist, 98, 18861892.
Novák, M., Kadlec, T and Gadas, P. (2013b) Geological position, mineral assemblages and contamination of granitic pegmatites in the Moldanubian Zone, Czech Republic; examples from the Vlastejovice region. Journal of Geosciences, 58, 21–7.
Pouchou, J.L. and Pichoir, E (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3l-75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.
Prescher, C., McCammon, C. andDubrowinsky, L. (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. Journal of Applied Crystallography, 45, 329331.
Reznitskii, L., Clark, C.M., Hawthorne, EC, Grice, J.D., Skogby, H., Hålenius, U. and Bosi, F. (2014) Chromo-alumino-povondraite, NaCr3(Al4Mg2)(Si6O18) (BO3)3 (OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 99, 17671773.
Selway, J.B., Černý, P. and Hawthorne, EC (1998) Feruvite from lepidolite pegmatites at Red Cross Lake, Manitoba. The Canadian Mineralogist, 36, 433–39.
Selway, J.B., Novák, M., Černý, P. and Hawthorne, EC (2000) The Tanco pegmatite at Bernic Lake, Manitoba. XIII. Exocontact tourmaline. The Canadian Mineralogist, 38, 10951102.
Sheldrick, G.M. (2013) SHELXL2013. University of Göttingen, Germany.
Skogby, H., Bosi, E and Lazor, P. (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Physics and Chemistry of Minerals, 39, 811816.
Wright, S.E., Foley, J.A. and Hughes, J.M. (2000) Optimization of site occupancies in minerals using quadratic programming. American Mineralogist, 85, 524531.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Bosi et al. supplementary material

 Unknown (18 KB)
18 KB

Lucchesiite, CaFe2+ 3Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup

  • Ferdinando Bosi (a1), Henrik Skogby (a2), Marco E. Ciriotti (a3), Petr Gadas (a4), Milan Novák (a4), Jan Cempírek (a4), Dalibor Všianský (a4) and Jan Filip (a5)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.