Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T01:53:40.927Z Has data issue: false hasContentIssue false

Loparite and ‘metaloparite’ from the Burpala alkaline complex, Baikal Alkaline Province (Russia)

Published online by Cambridge University Press:  05 July 2018

A. R. Chakhmouradian
Affiliation:
Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1
R. H. Mitchell
Affiliation:
Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada P7B 5E1
A. V. Pankov
Affiliation:
Department of Mineralogy, St. Petersburg State University, 7/9 University Emb., St. Petersburg, Russia 199034
N. V. Chukanov
Affiliation:
Institute of Chemical Physics, Chernogolovka, Moscow Region, Russia 101026

Abstract

Loparite-(Ce) is a ubiquitous accessory mineral in modally diverse albite-rich metasomatic rocks of the Burpala alkaline complex, Siberia. Compositionally, the mineral approaches the ideal formula NaREETi2O6 (REE = Ce > La > Nd > Pr > Sm), and contains minor CaTiO3 (<4.8 mol.%), SrTiO3 (<4.7 mol.%) and NaNbO3 (<6.4 mol.%), The mineral is pseudocubic [ap = 3.8815(3) Å], and produces an XRD pattern similar to that of synthetic NaCeTi2O6 [Pnma, a = 5.4517(4), b = 7.7058(9), c = 5.4333(6) Å]. The atomic coordinates and isotropic thermal parameters of synthetic NaCeTi2O6 refined from an XRD powder pattern using the Rietveld method, are given. At Burpala, loparite precipitated from an alkaline REE-rich fluid during the metasomatic alteration of earlier-formed intrusive rocks. In some parageneses, loparite was replaced by ‘metaloparite’ during the final stages of metasomatism. ‘Metaloparite’ has the empirical formula REETi2O6-x(OH,F)x·nH2O, and shows minor enrichment in Ca and depletion in Sr, compared to co-existing loparite. The formation of ‘metaloparite’ involved cation leaching, hydration and ion-exchange between loparite and a fluid. ‘Metaloparite’ is metamict at room temperature, but some samples regain the perovskite-type structure upon heating.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banfield, J.F. and Veblen, D.R. (1992) Conversion of perovskite to anatase and TiO2 (B): A TEM study and the use of fundamental building blocks for understanding relationships among the TiO2 minerals. Amer. Mineral., 77, 545–57.Google Scholar
Belous, A.G., Novitskaya, G.N., Gavrilova, L.G., Polyanetskaya, S.V. and Makarova, Z.Ya. (1985) Lanthanum titanate-zirconates with the perovskite structure. Soviet Progr. Chem., 51, 13–5.Google Scholar
Bhat, V. and Gopalakrishnan, J. (1986) HNbWO6 and HTaWO6: novel oxides related to ReO3 formed by ion exchange of rutile-type LiNbWO6 and LiTaWO6 . J. Solid State Chem., 63, 278–83.CrossRefGoogle Scholar
Campbell, L.S., Henderson, P., Wall, F. and Nielsen, T.F.D. (1997) Rare earth chemistry of perovskite group minerals from the Gardiner complex. east Greenland. Mineral. Mag., 61, 197212.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (1997) Compositional variation of perovskite-group minerals from the carbonatite complexes of the Kola Alkaline Province. Russia. Canad. Mineral., 35, 1293–310.Google Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (1998 a) Compositional variation of perovskite-group miner- als from the Khibina alkaline complex, Kola Peninsula. Canad. Mineral., 36, (in press).Google Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (1998 b) A structural study of the perovskite CaTi1-2xFexNbxO3 . J. Solid State Chem., 138, 272–7.CrossRefGoogle Scholar
Chakhmouradian, A.R., Rudashevsky, N.S. and Pilipiuk, A.N. (1995) Loparite mineralization of the Niorkpakhk Mt. (Khibiny): The role of metasomatism in its formation. Zap. Vses. Mineral. Obshch., 124, 72–8.Google Scholar
Drake, M.J. and Weill, D.F. (1972) New rare earth element standards for electron microprobe analysis. Chem. Geol., 10, 179–81.CrossRefGoogle Scholar
Gerasimovskii, V.I. (1941) Metaloparite, a new mineral from the Lovozero tundras. Compt. Rend. Acad. Sci. URSS, 33, 61–3.Google Scholar
Giereé, R. and Williams, C.T. (1992) REE-bearing minerals in a Ti-rich vein from the Adamello contact aureole (Italy). Contrib. Mineral. Petrol., 112, 83100.CrossRefGoogle Scholar
Haggerty, S.E. and Mariano, A.N. (1983) Strontian-loparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Paraná Basin carbonatites, South America. Contrib. Mineral. Petrol., 84, 365–81.CrossRefGoogle Scholar
Harley, S.L. (1994) Mg-Al yttrian zirconolite in a partially melted sapphirine granulite, Vestfold Hills, east Antarctica. Mineral. Mag., 58, 259–69.CrossRefGoogle Scholar
Hu, M., Wenk, H.-R. and Sinitsyna, D. (1992) Microstructures in natural perovskites. Amer. Mineral., 77, 359–73.Google Scholar
Kaleveld, E.W., Bruntinck, D.J., Dotman, J.P. and Blasse, G. (1973) An infrared investigation of the order on the larger cation sublattice of the perovskite structure. J. Inorg. Nucl. Chem., 35, 3928–30.CrossRefGoogle Scholar
Kastrissios, T.K., Stephenson, M. and Turner, P.S. (1987) Hydrothermal dissolution of perovskite: Implications for Synroc formulation. J. Amer. Ceram. Soc., 70, C144–6.CrossRefGoogle Scholar
Kesson, S.E., Sinclair, W.J. and Ringwood, A.E. (1983) Solid solution limits in SYNROC zirconolite. Nucl. Chem. Waste Manag., 4, 259–65.Google Scholar
Khomyakov, A.P. (1972) Abundance of rare-earth elements in rocks and auxiliary minerals of the Burpala alkaline complex (Northern Transbaikalia). Izvestiya AN SSSR, Ser. Geol., 1972 (1), (in Russian), 94101.Google Scholar
Kirnarskii, Yu.M., Kondakov, Yu.S. and Savitskii, V.A. (1982) Aegirine-albite metasomatites of the Lovozero massif and its surroundings. Dokl. AN SSSR, 267, (in Russian), 1183–6.Google Scholar
Kirsanov, N.A. and Bazuev, G.V. (1988) Synthesis and X-ray studies of the perovskite solid solutions Ln2/3-xNa3xTiO3 . Zhurnal Neorg. Chimii (J. Inorg. Chem.), 33, (in Russian), 2909–12.Google Scholar
Kirsanov, N.A., Bazuev, G.V. and Finkel'shtein, L.D. (1988) Synthesis and properties of the perovskite solid solution Ce2/3-xNa3xTiO3 . Zhurnal Neorg. Chimii (J. Inorg. Chem.), 33, (in Russian), 1004–7.Google Scholar
Kogarko, L.N., Kononova, V.A., Orlova, M.P. and Woolley, A.R. (1995) Alkaline rocks and carbonatites of the world. Part 2: Former USSR. Chapman & Hall, London, U.K., 226 pp.Google Scholar
Kopylova, M.G., Rickard, R.S., Kleyenstueber, A., Taylor, W.R., Gurney, J.J. and Daniels, L.R.M. (1997) First occurrence of strontian K-Cr loparite and Cr-chevkinite in diamonds. Russian Geol. Geophys., 38, 405–20.Google Scholar
Kostyleva-Labuntsova, E.E., Borutskii, B.E., Sokolova, M.N., Shliukova, Z.V., Dorfman, M.D., Dudkin, O.B., Kozyreva, L.V. and Ikorskii, S.V. (1978) The mineralogy of the Khibina massif. Vol. 1. Nauka Press, Moscow, (in Russian), 228 pp.Google Scholar
Lapin, A.V. and Kulikova, I.M. (1989) Processes of pyrochlore alteration and their products in the carbonatite weathering crusts. Zap. Vses. Mineral. Obshch., 118, (in Russian), 41–9.Google Scholar
Lebedeva, I.O. and Nedosekova, I.L. (1993) On the process of aeschynitization of pyrochlore from carbonatites of the Buldymskii massif (Vishnevye Mts., Urals). Zap. Vses. Mineral. Obshch., 122, (in Russian), 69–75.Google Scholar
Leonov, A.I., Piryutko, M.M. and Keler, E.K. (1966) Influence of the gas medium and temperature on the reaction in the system Ce-Ti-O and comparison of the properties of titanates of rare earth elements. Inorg. Anal. Chem. (Bull. AN SSSR, Chem. Sci. Div.), 1966(5), 756–60.Google Scholar
Lumpkin, G.R. and Ewing, R.C. (1996) Geochemical alteration of pyrochlore-group minerals: Betafite subgroup. Amer. Mineral., 81, 1237–48.CrossRefGoogle Scholar
Lumpkin, G.R., Colella, M., Smith, K.L., Mitchell, R.H. and Larsen, A.O. (1997) Chemical composition, geochemical alteration, and radiation damage effects in natural perovskite. In Scientific Basis for Nuclear Waste Management, (in press).CrossRefGoogle Scholar
Merlino, S., Perchiazzi, N., Khomyakov, A.P., Pushcharovskii, D.Y., Kulikova, I.M. and Kuzmin, V.I. (1990) Burpalite, a new mineral from Burpalinskii massif, North Transbajkal, USSR: its crystal structure and OD character. Eur. J. Mineral., 2, 177–85.CrossRefGoogle Scholar
Mitchell, R.H. (1996) Perovskites: a revised classification scheme for an important rare earth element host in alkaline rocks. In Rare Earth Minerals: Chemistry, Origin and Ore Deposits (Jones, A.P. Wall, F. and Williams, C.T., eds), Chapman & Hall, London, 41–76.Google Scholar
Mitchell, R.H. and Chakhmouradian, A.R. (1996) Compositional variation of loparite from the Lovozero alkaline complex, Russia. Can. Mineral. 34, 977–90.Google Scholar
Mitchell, R.H. and Chakhmouradian, A.R. (1998 a) Th-rich loparite from the Khibina alkaline complex, Kola Peninsula: isomorphism and paragenesis. Mineral. Mag. 62, 341–53.CrossRefGoogle Scholar
Mitchell, R.H. and Chakhmouradian, A.R. (1998 b) A structural study of the perovskite series Na½+xLa½−3xTh2xTiO3 . J. Solid State Chem., 138, 307–12.CrossRefGoogle Scholar
Myhra, S., Savage, D., Atkinson, A. and Riviere, J.C. (1984) Surface modification of some titanate minerals subjected to hydrothermal chemical attack. Amer. Mineral., 69, 902–9.Google Scholar
Nesbitt, H.W., Bancroft, M.G., Fyfe, W.S., Karkhanis, S.N. and Nishijima, A. (1981) Thermodynamic stability and kinetics of perovskite dissolution. Nature, 289, 358–62.CrossRefGoogle Scholar
Nickel, E.H., Grey, I.E. and Madsen, I.C. (1987) Lucasite-(Ce), CeTi2(O,OH)6, a new mineral from Western Australia: Its description and structure. Amer. Mineral., 72, 1006–10.Google Scholar
Platt, R.G. (1994) Perovskite, loparite and Ba-Fe hollandite from the Schryburt Lake carbonatite complex, northwestern Ontario. Canada. Mineral. Mag., 58, 4957.CrossRefGoogle Scholar
Portnov, A.M., Dubakina, L.S. and Krivokoneva, G.K. (1981) Murataite in predictable association with landauite. Dokl. AN SSSR, Earth Sci. Sect., 261, 168–70.Google Scholar
Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W. and Major, A. (1979) Immobilisation of high level nuclear reactor wastes in SYNROC. Nature, 278, 219–23.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990) ‘FULLPROF’ program: Rietveld pattern matching analysis of powder patterns. ILL, Grenoble.Google Scholar
Rosenblum, S. and Mosier, E.L. (1975): Nonmetamict nioboaeschynite-(Ce) from Alaska. Amer. Mineral., 60, 309–15.Google Scholar
Saltykova, V.S. (1959) Analyses of minerals with rare elements, obtained at the Chemical Laboratory of the. Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements AN SSSR during 1954-1957. Trudy IMGRE, 2, (in Russian), 189208.Google Scholar
Semenov, E.I. (1972) The Mineralogy of the Lovozero Alkaline Massif. Nauka Press, Moscow, (in Russian), 308 pp.Google Scholar
Shan, Y.J., Nakamura, T., Inaguma, Y. and Itoh, M. (1998) Preparation and dielectric characterizations of the novel perovskite-type oxides (Ln½Na½)TiO3 (Ln = Dy, Ho, Er, Tm, Yb, Lu). Solid State Ionics, 108, 123–8.CrossRefGoogle Scholar
Sun, P.H., Nakamura, T., Shan, Y.J., Inaguma, Y. and Itoh, M. (1997) High-temperature quantum paraelectricity in perovskite-type titanates Ln½Na½TiO3 (Ln = La, Pr, Nd, Sm, Eu, Gd, and Tb). Ferroelectr., 200, 93107.CrossRefGoogle Scholar
Sych, A.M., Belokon', A.T., Dem'yanenko, V.P. and Eremenko, L.A. (1973) Vibration spectra of perovskite-structure rare-earth niobates. Ukrain. Phys. Zh. (Ukrain. J. Phys.), 18, (in Russian), 787–92.Google Scholar
Tolok, A.A. and Bazhenova, F.V. (1965) Loparite — a new accessory mineral in nepheline syenites of the Sikhote-Alin'. Zap. Vses. Mineral. Obshch., 94, (in Russian), 217–9.Google Scholar
Wall, F., Williams, C.T. and Woolley, A.R. (1996) Pyrochlore from weathered carbonatite at Lueshe. Zaire. Mineral. Mag., 60, 731–50.CrossRefGoogle Scholar
Woodward, P.M. (1997) Octahedral tilting in perovs- kites. I. Geometrical considerations. Acta Crystallogr., B53, 32–43.CrossRefGoogle Scholar
Zhao, Yu., Weidner, D.J., Parise, J.B. and Cox, D.E. (1993) Critical phenomena and phase transition of perovskite — data for NaMgF3 perovskite. Part II. Phys. Earth Planet. Inter., 76, 1734.Google Scholar
Zhidkov, A.Ya. (1961 a) Loparite from the North-Baikal ridge. Zap. Vses. Mineral. Obshch., 90, (in Russian), 288–91.Google Scholar
Zhidkov, A.Ya. (1961 b) The new North-Baikal alkaline province, and certain traits of the occurrence of nepheline in its rocks. Dokl. AN SSSR, 140, (in Russian), 181–4.Google Scholar