Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T17:51:58.470Z Has data issue: false hasContentIssue false

Lillianites and andorites: new life for the oldest homologous series of sulfosalts

Published online by Cambridge University Press:  05 July 2018

E. Makovicky*
Affiliation:
Institute for Geoscience and Mineral Resources Management, University of Copenhagen, Østervoldgade 10, DK-1350, Copenhagen K, Denmark
D. Topa
Affiliation:
Natural History Museum-Wien, Burgring 7, 1010 Vienna, Austria
*

Abstract

The current state of the lillianite homologous series is presented, with its two branches − the lillianite branch of the predominantly Pb-Bi-Ag sulfosalts and the andorite branch of predominantly Pb-Sb-Ag sulfosalts. Both the natural and synthetic members are discussed, especially from the structural and compositional point of view and the related, chemically distinct and structurally more complicated members of the series are described. A number of new published, or hitherto unpublished observations is given, together with fairly exhaustive tables of data. Relationships between the complex structures of different ‘andorite’ species and principal structural features of ‘oversubstituted’ As-Sb and Bi-Sb species are discussed. Contrary to many studies of this subject, synthetic phases form an integral part of the paper. It is concluded that research in this long-known homologous series still supplies new interesting phases, especially in the fields of synthetic products and in its andorite branch.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphe, C. (1968) Contribution a l’étude d’un groupe de sulfures isostructuraux de terres rares et d’yttrium de type: Y5S7 et FeY4S7 . Bulletin de la Societé francaise de Minéralogie et de Cristallographie, 91, 219232.Google Scholar
Adolphe, C. and Laruelle, P. (1968) Structure crystalline de FeHo4S7 et de certains composés isotypes. Bulletin de la Société française de Minéralogie et de Cristallographie, 91, 219232.CrossRefGoogle Scholar
Ahlfeld, F. (1930) Ramdohrit, ein neues mineral aus Bolivien. Zentralblatt für Mineralogie, Geologie und Paläontologie, A, 1930, 365367.Google Scholar
Aizawa, K., Iguchi, E. and Tilley, R.J.D. (1983) The elastic strain-energy and stability of some idealized lead-bismuth sulfides. Journal of Solid State Chemistry, 48, 284294.CrossRefGoogle Scholar
Bakker, M. and Hyde, B.G. (1978) A preliminary electron microscope study of chemical twinning in the system MnS + Y2S3, an analogue of the mineral system PbS + Bi2S3 (galena + bismuthinite). Philosophical Magazine, A38, 615628.CrossRefGoogle Scholar
Balić-Žunić, T. and Makovicky, E. (1996) Determination of the centroid or ‘the best centre’ of a coordination polyhedron. Acta Crystallographica, B52, 7881.CrossRefGoogle Scholar
Bärnighausen, H. (1980) Group-subgroup relations between space groups: a useful tool in crystal chemistry, MATCH. Communications in Mathematical Chemistry, 9, 139175.Google Scholar
Berastegui, P., Eriksson, S., Hull, S., Garcia, F.J.G. and Eriksen, J. (2004) Synthesis and crystal structure of the alkaline-earth thallates MnTl2O3+n (M = Ca, Sr). Solid State Sciences, 6, 433441.CrossRefGoogle Scholar
Berlepsch, P., Armbruster, T., Makovicky, E., Hejny, C., Topa, D. and Graeser, S. (2001) The crystal structure of (001) twinned xilingolite, Pb3Bi2S6, from Mittal- Hohtenn, Valais, Switzerland. The Canadian Mineralogist, 39, 16531663.CrossRefGoogle Scholar
Bertaut, E.F. and Blum, P. (1956) Determination de la structure de Ti2CaO4 par la methode self-consistante d’approche directe. Acta Crystallographica, 9, 121126.CrossRefGoogle Scholar
Bindi, L., Keutsch, F.N. and Bonazzi, P. (2012) Menchettiite, AgPb2.40Mn1.60Sb3As2S12, a new sulfosalt belonging to the lillianite series from the Uchucchacua polymetallic deposit , Lima Department, Peru. American Mineralogist, 97, 440446.CrossRefGoogle Scholar
Borisov, S.V., Magarill, S.A. and Pervukhina, N.V. (2012) Crystallographic analysis of microtwin structures of sulfides: the case study of lillianite and heyrovskyite. Journal of Structural Chemistry, 53, 734739.CrossRefGoogle Scholar
Borodaev, Y.S., Garavelli, A., Garbarino, C., Grillo, S.M., Mozgova, N.N., Uspenskaya, T.Y. and Vurro, F. (2001) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. IV. Lillianite. The Canadian Mineralogist, 39, 13831396.CrossRefGoogle Scholar
Borodaev, Y.S., Garavelli, A., Garbarino, C., Grillo, S.M., Mozgova, N.N., Paar, W.H., Topa, D. and Vurro, F. (2003) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. V. Selenian heyrovskýite. The Canadian Mineralogist, 41, 429440.CrossRefGoogle Scholar
Callegari, A.M. and Boiocchi, M. (2009) Aschamalmite (Pb6Bi2S9): crystal structure and ordering scheme for Pb and Bi atoms. Mineralogical Magazine, 73, 8394.CrossRefGoogle Scholar
Carré, D. and Laruelle, P. (1974) Structure crystalline du sulfure de néodyme et d’ytterbium, NdYbS3. Acta Crystallographica, B30, 952954.CrossRefGoogle Scholar
Chang, L.L.Y. (1987) Ag1.2Sn0.9Sb3S6, a tin-bearing andorite phase. Mineralogical Magazine, 51, 741743.CrossRefGoogle Scholar
Chang, L.L.Y., Wu, D. and Knowles, C.R. (1988) Phase relations in the system Ag2S–Cu2S–PbS–Bi2S3 . Economic Geology, 83, 405418.CrossRefGoogle Scholar
Chen, K. and Lee, C. (2010a) Experimental and theoretical studies of Sn3–dPbdBi2Se6 (d = 0.0–0.7). Journal of Solid State Chemistry, 183, 807813.CrossRefGoogle Scholar
Chen, K. and Lee, C. (2010b) Synthesis and phase width of new quaternary selenides PbxSn6–xBi2Se9 (x = 0–4.36). Journal of Solid State Chemistry, 183, 26162622.CrossRefGoogle Scholar
Chen, M., Shu, J.F. and Mao, H.K. (2008) Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin, 53, 33413345.Google Scholar
Christuk, A.E., Wu, P. and Ibers, J.A.(1994) New quaternary chalcogenides BaLnMQ3 (Ln = Rare earth; M = Cu, Ag; Q = S, Se): I. Structures and grinding-induced phase transition in BaLaCuQ3 . Journal of Solid State Chemistry, 110, 330336.CrossRefGoogle Scholar
Cook, N.J. (1997) Bismuth and bismuth-antimony sulphosalts from Neogene vein mineralisation, Baia Bors–a area, Muramares–, Romania. Mineralogical Magazine, 61, 387409.CrossRefGoogle Scholar
Donnay, J.D.H. and Donnay, G. (1954) Syntaxic intergrowths in the andorite series. American Mineralogist, 39, 161171.Google Scholar
Doussier, C., Moëlo, Y. Léone, P. Meerschaut, A. and Evain, M. (2007) Crystal structure of Pb2SbS2I3 and re-examination of the crystal chemistry within the group of (Pb/Sn/Sb) chalcogeno-iodides. Solid State Sciences, 9, 792803.CrossRefGoogle Scholar
Elcoro, L., Perez-Mato, J.M., Friese, K., Petricek, V., Balić-Žunić, T. and Olsen, L.A. (2008) Modular materials as modulated structures. The case of the lillianite homologous series. Acta Crystallographica, B64, 684701.CrossRefGoogle Scholar
Ertl, A., Libowitzky, E. and Pertlik, F. (1994) Chemische und rö ntgenkristallographische Untersuchungen an Eskimoit (∼Ag7Pb10Bi15S36) und Heyrovskyit (∼AgPb10Bi5S18) vom ‘Rauriser Goldberg’, Hüttwinkeltal, Land Salzburg. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 139, 135142.Google Scholar
Evain, M., Petříček, V. Moëlo, Y. and Maurel, C. (2006) First (3+2)-dimensional superspace approach to the structure of levyclaudite-(Sb), a member of the cylindrite-type minerals. Acta Crystallographica, B62, 775789.Google Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2008) Crystallography of Modular Materials. Oxford Science Publications, Oxford, UK.CrossRefGoogle Scholar
Gostojič, M., Nowacki, W. and Engel, P. (1982) The crystal structure of synthetic TlSb3S5. Zeitschrift für Kristallographie, 159, 217224.Google Scholar
Goutenoire, J.F., Caignaert, V., Herview, M. and Raveau, B. (1995) The calcium thallate Ca3Tl4O8, an intergrowth of the CaTl2O4 and Ca2Tl2O5 structures, member n = 1.5 of the series CanTl2On+3 . Journal of Solid State Chemistry, 119, 134141.CrossRefGoogle Scholar
Grzechnik, A. and Friese, K. (2010) Pressure-induced orthorhombic structure of PbS. Journal of Physics: Condensed Matter, 22, http://dx.doi.org/10.1088/0953-8984/22/9/095402. Google Scholar
Guittard, M., Lemoine, P., Wintenberger, M., Flahaut, J. (1987) Eu2CuS3 and related AIIBIIICuS3 compounds. Journal of the Less-Common Metals, 127, 394.CrossRefGoogle Scholar
Harlov, D.E. and Sack, R.O. (1994) Thermochemistry of the polybasite-pearceite solid solutions. Geochimica et Cosmochimica Acta, 58, 43634375.CrossRefGoogle Scholar
Harlov, D.E. and Sack, R.O. (1995) Ag-Cu exchange equilibria between pyrargyrite, high-skinnerite and polybasite solutions. Geochimica et Cosmochimica Acta, 59, 867874.Google Scholar
Harris, D.C. and Chen, T.T. (1975) Gustavite, two Canadian occurrences. The Canadian Mineralogist, 13, 411414.Google Scholar
Heikens, H.H., Kuindersma, R.S., van Bruggen, C.E. and Haas, C. (1978) Magnetic properties of MnEr2S4, MgEr2S4 and MnxMg1–xY2S4 . Physica Status Solidi A – Applications and Materials, 46, 687695.CrossRefGoogle Scholar
Hong, H., Wang, X., Shi, N. and Peng, Z. (1982) Xilingolite, a new sulfide of lead and bismuth, Pb3+xBi2–2/3xS6 . Acta Petrologica Mineralogica et Analytica, 1, 1418.Google Scholar
Ikonić, Z., Srivastava, G.P. and Inkson, J.C. (1997) Electronic structure of natural self-organized PbS–Bi2S3 twinning superlattices. Physical Review B, 55, 92869289.CrossRefGoogle Scholar
Karup-Møller, S. (1970) Gustavite, a new sulfosalt from Greenland. The Canadian Mineralogist, 10, 173190.Google Scholar
Karup-Møller, S. and Makovicky, E. (1981) Ag- and Birich heyrovskyite from the Bi-W-Mo mineralization at Castlegar, British Columbia. The Canadian Mineralogist, 19, 349353.Google Scholar
Kawada, I. and Hellner, E. (1971) Die Kristallstruktur der Pseudozelle (subcell) von Andorit VI (Ramdohrit). Neues Jahrbuch für Mineralogie, Monatshefte, 1971, 551560.Google Scholar
Krämer, V. (1976) Vapour growth and structural characterization of the new indium bismuth sulphide halides InBi2S4Cl and InBi2S4Br. Materials Research Bulletin, 11, 183188.CrossRefGoogle Scholar
Kupčík, V., Franc, L. and Makovicky, E. (1967) Programs of the Annual Meeting of the German Mineralogical Society, Bonn, Germany.Google Scholar
Landa-Canovas, A.R. and Otero-Diaz, L.C. (1992) A transmission electron microscopy study of the MnS–Er2S3 system. Australian Journal of Chemistry, 45, 14731487.CrossRefGoogle Scholar
Lavina, B., Dera, P., Kim, E., Meng, Y., Downs, R.T., Weck, P.F., Sutton, S.R. and Zhao, Y. (2011) Discovery of the recoverable high-pressure iron oxide Fe4O5 . Proceedings of the National Academy of Sciences, USA, 108, 1728117285.CrossRefGoogle ScholarPubMed
Lemoine, P., Carré, D. and Guittard, M. (1986) Structure de sulfure d’europium et de cuivre, Eu2CuS3. Acta Crystallographica, 42, 390391.Google Scholar
Liu, H. and Chang, L.L.Y. (1994) Lead and bismuth chalcogenide system. American Mineralogist, 79, 11591166.Google Scholar
Liu, H.F., Chang, L.L.Y. and Knowles, C.R. (1994) The Mn isotype of andorite and uchucchuacuaite. The Canadian Mineralogist, 32, 185188.Google Scholar
Makovicky, E. (1977) Chemistry and crystallography of the lillianite homologous series. Part III. Crystal chemistry of lillianite homologues. Related phases. Neues Jahrbuch für Mineralogie, Abhandlungen, 131, 187207.Google Scholar
Makovicky, E. (1981) The building principles and classification of bismuth-lead sulfosalts and related compounds. Fortschritte der Mineralogie, 59, 137190.Google Scholar
Makovicky, E. (1984) The building principles and classification of sulphosalts based on the SnS archetype. Fortschritte der Mineralogie, 63, 4589.Google Scholar
Makovicky, E. (1989) Modular classification of sulfosalts – current status, definition and application of homologous series. Neues Jahrbuch für Mineralogie, Abhandlungen, 160, 269297.Google Scholar
Makovicky, E. (1993) Rod-based sulphosalt structures derived from the SnS and PbS archetypes. European Journal of Mineralogy, 5, 545591.CrossRefGoogle Scholar
Makovicky, E. (2006) Crystal structures of sulphides and other chalcogenides. Pp. 7–125 in: Sulfide mineralogy and geochemistry (D.J. Vaughan, editor). Reviews in Mineralogy and Geochemistry, 61, Mineralogical Society of America and the Geochemical Society, Washington D.C., USA.CrossRefGoogle Scholar
Makovicky, E. and Balić-Žunić, T. (1993) Contributions to the crystal chemistry of thallium sulphosalts. II. TlSb3S5 – the missing link of the lillianite homologous series. Neues Jahrbuch für Mineralogie, Abhandlungen, 165, 331344.Google Scholar
Makovicky, E. and Karup-Møller, S. (1977a) Chemistry and crystallography of the lillianite homologous series. Part 1. General properties and definitions. Neues Jahrbuch fur Mineralogie, Abhandlugen, 130, 264287.Google Scholar
Makovicky, E. and Karup-Møller, S. (1977b) Chemistry and crystallography of the lillianite homologous series. Part 2. Definition of new minerals: eskimoite, vikingite, ourayite and treasurite. Redefinition of schirmerite and new data on the lillianite-gustavite solid-solution series. Neues Jahrbuch für Mineralogie, Abhandlugen, 130, 264287.Google Scholar
Makovicky, E. and Karup-Møller, S. (1984) Ourayite from Ivigtut, Greenland. The Canadian Mineralogist, 22, 565575.Google Scholar
Makovicky, E. and Mumme, W.G. (1983) The crystal structure of ramdohrite Pb6Sb11Ag3S24 and its implications for the andorite group and zinckenite. Neues Jahrbuch für Mineralogie, Abhandlungen, 147, 5879.Google Scholar
Makovicky, E. and Mumme, W.G. (1986) The crystal structure of izoklakeite, Pb51.3Sb20.4Bi19.5Ag1.2 Cu2.9Fe0.7S114, the kobellite homologous series and its derivatives. Neues Jahrbuch für Mineralogie, Abhandlungen, 153, 121145.Google Scholar
Makovicky, E. and Topa, D. (2011) The crystal structure of gustavite, PbAgBi3S6. Analysis of twinning and polytypism using the OD approach. European Journal of Mineralogy, 23, 537550.CrossRefGoogle Scholar
Makovicky, E. and Topa, D. (2014) The crystal structure of jasrouxite, a Pb-Ag-As-Sb member of the lillianite homologous series. European Journal of Mineralogy, 26, 145155.CrossRefGoogle Scholar
Makovicky, E., Mumme, W.G. and Watts, J.A. (1977) The crystal structure of synthetic pavonite, AgBi3S5 and the definition of the pavonite homologous series. The Canadian Mineralogist, 15, 339348.Google Scholar
Makovicky, E., Mumme, W.G. and Hoskins, B.F. (1991) The crystal structure of Ag-Bi-bearing heyrovskyite. The Canadian Mineralogist, 29, 553559.Google Scholar
Makovicky, E., Mumme, W.G. and Madsen, I.C. (1992) The crystal structure of vikingite. Neues Jahrbuch für Mineralogie, Monatshefte, 1992, 454468.Google Scholar
Makovicky, E., Petříček, V. Dušek, M. and Topa, D. (2011) The crystal structure of franckeite, Pb21.7Sn9.3Fe4.0Sb8.1S56.9 . American Mineralogist, 96, 16861702.CrossRefGoogle Scholar
Makovicky, E., Mumme, W.G. and Gable, R.W. (2013) The crystal structure of ramdohrite, Pb5.9 Fe0.1Mn0.1In0.1Cd0.2Ag2.8Sb10.8S24: a new refinement. American Mineralogist, 98, 773779.CrossRefGoogle Scholar
Mitolo, D., Capitani, G.C., Garavelli, A. and Pinto, D. (2011) Transmission electron microscopy investigation of Ag-free lillianite and heyrovský ite from Vulcano, Aeolian Islands, Italy. American Mineralogist, 96, 288300.CrossRefGoogle Scholar
Moëlo, Y., Makovicky, E. and Karup-Møller, S. (1984a) New data on the minerals of the andorite series. Neues Jahrbuch für Mineralogie, Monatshefte, 4, 175182.Google Scholar
Moëlo, Y., Oudin, E., Picot, P. and Caye, R. (1984b) L’uchucchacuaite, AgMnPb3Sb5S12, une nouvelle espèce minérale de la série de l’andorite. Bulletin de Minéralogie, 107, 597604.Google Scholar
Moëlo, Y., Marcoux, E., Makovicky, E., Karup-Møller, S. and Legendre, O. (1987) Homologues de la lillianite (gustavite, vikingite, heyrovskyite riche en Ag et Bi) de l’indice à W-As-(Pb,Bi,Ag) de La Roche Balue (Loire Atlantique, France). Bulletin de Minéralogie, 110, 4364.CrossRefGoogle Scholar
Moëlo, Y., Makovicky, E. and Karup-Møller, S. (1989) Sulfures complexes plombo-argentifères: minéralogie et cristallochimie de la série andorite-fizelyite (Pb,Mn,Fe,Cd,Sn)3–2x(Ag,Cu)x(Sb,Bi,As)2+x(S,Se)6. Documents du Bureau de Recherches Géologiques et Minères, 167. BRGM, Orléans, France.Google Scholar
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup-Møller, S., Balić-Žunić, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt subcommittee of the IMA commission on ore mineralogy. European Journal of Mineralogy, 20, 746.CrossRefGoogle Scholar
Mozgova, N.N., Bortnikov, N.S., Organova, N.I., Tsepin, A.I., Kuz’mina, O.V. and Nekrasov, I.Y. (1983) New data on the andorite homologous series. Mineralogicheskiy Zhurnal, 5, 1733.Google Scholar
Mrotzek, A. and Kanatzidis, M.G. (2003) Tropochemical cell-twinning in the new quaternary bismuth selenides KxSn6–2xBi2+xSe9 and KSn5Bi5Se13 . Inorganic Chemistry, 42, 72007206.CrossRefGoogle ScholarPubMed
Mumme, G.W., Niedermayr, G., Kelly, P.R. and Paar, W.H. (1983) Aschamalmite, Pb5.92Bi2.06S9, from Untersulzbach Valley in Salzburg, Austria – ‘monoclinic heyrovskyite’. Neues Jahrbuch für Mineralogie, Monatshefte, 10, 433444.Google Scholar
Mumme, W.G., Makovicky, E., Lindquist, B., Gable, R.W. and Wilson, D. (2012) Crystal structures of synthetic gold-bearing sulfosalts. The Canadian Mineralogist, 50, 13471372.CrossRefGoogle Scholar
Nespolo, M., Ozawa, T., Kawasaki, Y. and Sugiyama, K. (2012) Structural relations and pseudosymmetries in the andorite homologous series. Journal of Mineralogical and Petrological Sciences, 107, 226243.CrossRefGoogle Scholar
Noël, H. and Padiou, J. (1976) Structure crystalline de FeUS3. Acta Crystallographica, B32, 15931595.CrossRefGoogle Scholar
Nuffield, E.W. (1945) Studies of mineral sulfosalts: X.- Andorite, ramdohrite, fizelyite. Transactions of the Royal Society of Canada, 3rd Series, 39, 4150.+ plates I–III.Google Scholar
Ohsumi, K., Tsutsui, K., Takéuchi, Y. and Tokonami, M. (1984) Reinvestigation of lillianite structure with synchrotron radiation. Acta Crystallographica, A40, C225–C256.CrossRefGoogle Scholar
Organova, N.I., Kuzmina, O.V., Bortnikov, N.S. and Mozgova, N.N. (1982) Crystal structure of the subcell of synthetic andorite-24. Doklady Akademii Nauk SSSR, 267, 939942.Google Scholar
Olivier-Fourcade, J., Jumas, J.C., Maurin, M. and Philippot, E. (1980) Mise en evidence d’un nouveau sulfoiodure d’etain et d’antimoine, Sn2SbS2I3: Etude structurale. Zeitschrift für Anorganische und Allgemeine Chemie, 468, 9198.CrossRefGoogle Scholar
Olsen, L.A., Balić-Žunić, T., Makovicky, E., Ullrich, A. and Miletich, R. (2007). Galenobismutite. Physics and Chemistry of Minerals, 34, 467475.CrossRefGoogle Scholar
Olsen, L.A., Balić-Žunić, T. and Makovicky, E. (2008) High-pressure anisotropic distortion of Pb3Bi2S6: a pressure-induced reversible phase transition with migration of chemical bonds. Inorganic Chemistry, 47, 67566762.CrossRefGoogle ScholarPubMed
Olsen, L.A., Friese, K., Makovicky, E., Balić-Žunić, T., Morgenroth, W. and Grzechnik, A. (2011) Pressure induced phase transition in Pb6Bi2S6. Physics and Chemistry of Minerals, 38, http://dx.doi.org/10.1007/s00269-010-0376-1. CrossRefGoogle Scholar
Otto, H.H. and Strunz, H. (1968) Zur Kristallchemie synthetischer Blei-Wismuth-Spiessglanze. Neues Jahrbuch für Mineralogie, Abhandlungen, 108, 119.Google Scholar
Pažout, R. and Dušek, M.(2009) Natural monoclinic AgPb(Bi2Sb)3S6. Acta Crystallographica, C65, 177180.Google Scholar
Pažout, R. and Dušek, M. (2010) Crystal structure of natural orthorhombic Ag0.71Pb1.52Bi1.32Sb1.45S6, a lillianite homologue with N = 4; comparison with gustavite. European Journal of Mineralogy, 22, 741750.Google Scholar
Petrova, I.V., Pobedimskaya, E.A. and Spiridonov, E.M. (1986) Crystal structure of roshchinite. Materialy X. Vsesoyuz. Sov. po Rentgenografii Mineral’nogo Syrya, Tbilisi, 99–100 [in Russian].Google Scholar
Pervukhina, N.V., Borisov, S.V., Magarill, S.A., Kuratieva, N.V., Mozgova, N.N. and Chaplygin, I.V. (2012) Re-determination of the crystal structure of heyrovskyite mineral Pb6Bi2S9 (Kudryavyi Volcano, Iturup Island, Kurils, Russia). Journal of Structural Chemistry, 53, 588592.CrossRefGoogle Scholar
Pinto, D., Balic-Zunic, T., Garavelli, A., Makovicky, E. and Vurro, F. (2006) Comparative crystal-structure study of Ag-free lillianite and galenobismutite from Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 44, 159175.CrossRefGoogle Scholar
Pinto, D., Balić-Žunić, T., Garavelli, A. and Vurro, F. (2011) Structure refinement of Ag-free heyrovský ite from Vulcano (Aeolian Islands, Italy). American Mineralogist, 96, 11201128.CrossRefGoogle Scholar
Poudeu, P.F. and Ruck, M. (2002) Syntheses and crystal structures of AgBiSCl2 and AgBI2S2Cl3. Zeitschrift für anorganische und allgemeine Chemie, 628, 2204.3.0.CO;2-X>CrossRefGoogle Scholar
Poudeu, P.F.P., Söhnel, T. and Ruck, M. (2004) Homologous silver bismuth chalcogenide halides (N,x)P. I. Syntheses and crystal structures of the (0,1)P compound AgBI2S2Cl3 and of three members of the (1,x)P solid solution series Ag2xBi4–2xS6–4xBr4x. Zeitschrift für anorganische und allgemeine Chemie, 630, 12761285.CrossRefGoogle Scholar
Pring, A. (2001) The crystal chemistry of the sartorite group minerals from Lengenbach, Binntal, Switzerland - a HRTEM study. Schweizerische Mineralogische und Petrographische Mitteilungen, 81, 6987.Google Scholar
Pring, A. and Ciobanu, C.L. (2007) Chemical modulations in Pb-Bi sulfosalts: A glimpse at minerals in solid-state chemistry. Pp. 239–249 in: Turning Points in Solid-State, Materials and Surface Science (K.D.M. Harris and P.P. Edwards, editors). RSC Publishing, London.Google Scholar
Pring, A., Jercher, M. and Makovicky, E. (1999) Disorder and compositional variation in the lillianite homologous series. Mineralogical Magazine, 63, 917926.CrossRefGoogle Scholar
Prodan, A., Bakker, M. Versteegh, M. and Hyde, B.G. (1982) A microscopic study of synthetic PbS-rich homologues nPbS-mBi2S3. Physics and Chemistry of Minerals, 8, 188192.CrossRefGoogle Scholar
Rodi, F. and Babel, D. (1965) Erdalkaliiridium (IV) – oxide: Kristallstruktur von CaIrO3 . Zeitschrift für anorganishe und allgemeine Chemie, 336, 1723.CrossRefGoogle Scholar
Rogge, M.P., Caldwell, J.H., Ingram, D.R., Green, C.E., Geselbracht, M.J. and Siegrist, T. (1998) A new synthetic route to pseudo-brookite-type CaTi2O4 . Journal of Solid State Chemistry, 141, 338342.CrossRefGoogle Scholar
Ruck, M., Poudeu, P.F. and Soehnel, T. (2004) Kristallstruktur und elektronische Bandstruktur der isotypen Sulfidchloride CuBiSCl2 und AgBiSCl2 . Zeitschrift für anorganische und allgemeine Chemie, 630, 6367.CrossRefGoogle Scholar
Ruck, M. and Poudeu, P.F.P. (2008) Homologous silver bismuth chalcogenide halides (N,x)P. II. The (2,x)P and (3,x)P structure families of modular compounds with tunable composition and structure. Zeitschrift für anorganische und allgemeine Chemie, 634, 475481.CrossRefGoogle Scholar
Salanci, B. and Moh, G.H. (1969) Die experimentelle Untersuchung des pseudobinären Schnittes PbS–Bi2S3 innerhalb des Pb–Bi–S Systems in Beziehung zu natürlichen Blei-Wismut-Sulfosalzen. Neues Jahrbuch für Mineralogie, Abhandlungen, 112, 6395.Google Scholar
Sawada, H., Kawada, I., Hellner, E. and Tokonami, M. (1987) The crystal structure of senandorite (andorite VI): PbAgSb3S6 . Zeitschrift für Kristallographie, 180, 141150.CrossRefGoogle Scholar
Skowron, A. and Tilley, R.J.D. (1986) The transformation of chemically twinned phases in the PbS–Bi2S3 system to the galena structure. Chemica Scripta, 26, 353358.Google Scholar
Skowron, A. and Tilley, R.J.D. (1990) Chemically twinned phases in the Ag2S–PbS–Bi2S3 system. Part 1. Electron microscope study. Journal of Solid State Chemistry, 85, 235250.CrossRefGoogle Scholar
Spiridonov, E.M., Petrova, I.V., Dashevskaya, D.M., Balashov, E.P. and Klimova, L.M. (1990) Roshchinite, Pb10Ag19Sb51S96 – a new mineral. Doklady Akademii Nauk SSSR, 312, 197200.Google Scholar
Takagi, J. and Takéuchi, Y. (1972) The crystal structure of lillianite. Acta Crystallographica, B28, 649651.CrossRefGoogle Scholar
Takéuchi, Y. (1997) Tropochemical cell-twinning. A structure-building mechanism in crystalline solids. Terra Scientific Publishing Company, Tokyo, 319 pp.Google Scholar
Takéuchi, Y. and Takagi, J. (1974) The structure of heyrovskyite (6PbS.Bi2S3). Proceedings of the Japanese Academy, 50, 7679.CrossRefGoogle Scholar
Tilley, R.J.D. and Wright, A.C. (1982a) Chemical twinning in the PbS region of the PbS–Bi2S3 system. Chemica Scripta, 19, 1822.Google Scholar
Tilley, R.J.D. and Wright, A.C. (1982b) Electron microscope observation of the decomposition of Pb24Bi8S36 and Pb12Bi8S24 . Chemica Scripta, 19, 6874.Google Scholar
Tilley, R.J.D. and Wright, A.C. (1986) X-ray diffraction and electron microscope study of the Bi2S3–PbS system. Journal of Solid State Chemistry, 65, 4562.CrossRefGoogle Scholar
Tomas, A. and Guittard, M. (1980) Cristallochimie des sulfures mixtes de chrome et d’erbium. Material Research Bulletin, 15, 15471556.CrossRefGoogle Scholar
Tomas, A., Chevalier, R., Laruelle, P. and Bachet, B. (1976) Structure cristalline de CrEr2S4. Acta Crystallographica, B32, 32873289.CrossRefGoogle Scholar
Topa, D., Makovicky, E. and Balić-Žunić, T. (2003) Crystal structures and crystal chemistry of members of the cuprobismutite homologous series of sulfosalts. The Canadian Mineralogist, 41, 14811501.CrossRefGoogle Scholar
Topa, D., Makovicky, E., Schimper, H.J. and Dittrich, H. (2010) The crystal structure of a synthetic orthorhombic N = 8 member of the lillianite homologous series. The Canadian Mineralogist, 48, 11271135.CrossRefGoogle Scholar
Topa, D., Makovicky, E., Paar, W.H., Stanley, C.J. and Roberts, A.C. (2011) Oscarkempffite, IMA 2011- 029. CNMNC Newsletter No. 10, October 2011, page 2607; Mineralogical Magazine, 75, 26012613.Google Scholar
Topa, D., Makovicky, E., Ilinca, G. and Dittrich, H. (2012) Cupromakopavonite, Cu8Ag3Pb4Bi19S38, a new mineral species, its crystal structure and the cupropavonite homologous series. The Canadian Mineralogist, 50, 295312.CrossRefGoogle Scholar
Topa, D., Makovicky, E., Favreau, G., Bourgoin, V., Boulliard, J.-C., Zagler, G. and Putz, H. (2013a) Jasrouxite, a new Pb-Ag-As-Sb member of the lillianite homologous series from Jas Roux, Hautes- Alpes, France. European Journal of Mineralogy, 25, 10311038.CrossRefGoogle Scholar
Topa, D., Makovicky, E., Zagler, G., Putz, H., and Paar, W.H. (2013b) Erzwiesite, IMA 2012-082. CNMNC Newsletter No. 15, February 2013, page 10. Mineralogical Magazine, 77, 112.Google Scholar
Topa, D., Makovicky, E., Putz, H., Zagler, G. and Tajjedin, H. (2013c) Arsenquatrandorite, IMA 2012- 087. CNMNC Newsletter No. 16, August 2013, page 2696. Mineralogical Magazine, 77, 26952709.Google Scholar
Topa, D., Makovicky, E. and Paar, W.H. (2013d) Clinooscarkempffite, IMA 2012-086. CNMNC Newsletter No. 16, August 2013, page 2696. Mineralogical Magazine, 77, 26952709.Google Scholar
Tsuchiya, T., Tsuchiya, J., Umemoto, S. and Wentzcovitch, R.M. (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth and Planetary Science Letters, 224, 241248.CrossRefGoogle Scholar
Wang, M.-F., Jang, S.-M., Huang, J.-C. and Lee, C.-S. (2009) Synthesis and characterization of quaternary chalcogenides InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 . Journal of Solid State Chemistry, 182, 14501456.CrossRefGoogle Scholar
Wang, S. and Kuo, K.H. (1991) Crystal lattices and crystal chemistry of cylindrite and franckeite. Acta Crystallographica, A47, 381392.CrossRefGoogle Scholar
Wang, N.D. (1999) An experimental study of some solid solutions in the system Ag2S–PbS–Bi2S3 at low temperatures. Neues Jahrbuch für Mineralogie, Monatshefte, 1999, 223240.Google Scholar
Wu, P., Christuk, A.E. and Ibers, J.A. (1994) New quaternary chalcogenides BaLnMQ3 (Ln = rare earth or Sc; M = Cu, Ag; Q = S, Se). Journal of Solid State Chemistry, 110, 337344.CrossRefGoogle Scholar
Yamanaka, T., Uchida, A. and Nakamoto, Y. (2008) Structural transition of post-spinel phases CaMn2O4, CaFe2O4 and CaTi2O4 under high pressures up to 80 GPa. American Mineralogist, 93, 18741881.CrossRefGoogle Scholar
Yang, H. Downs, R.T., Burt, J.B. and Costin, G. (2009) Structure refinement of an untwinned single crystal of Ag-excess fizelyite, Ag5.94Pb13.74Sb20.84S48 . The Canadian Mineralogist, 47, 12571264.CrossRefGoogle Scholar
Yang, H., Downs, R.T., Evans, S.H., Feinglos, M.N. and Tait, K.T. (2011) Crystal structure of uchucchacuaite, AgMnPb3Sb5S12 and its relationship with ramdohrite and fizelyite. American Mineralogist, 96, 11861189.CrossRefGoogle Scholar
Yang, H., Downs, R.T., Evans, S.H. and Pinch, W.W. (2013) Terrywallaceite, AgPb(Sb,Bi)3S6, isotypic with gustavite, a new mineral from Mina Herminia, Julcani Mining District, Huancavelica, Peru. American Mineralogist, 98, 13101314.CrossRefGoogle Scholar