Skip to main content Accessibility help

K2.9Rb0.1ErSi3O9: a novel, non-centrosymmetric chain silicate and its crystal structure

  • M. Wierzbicka-Wieczorek (a1), U. Kolitsch (a1) (a2), L. Nasdala (a1) and E. Tillmanns (a1)


The new, non-centrosymmetric chain silicate, K2.9Rb0.1ErSi3O9, was prepared by a high-temperature flux-growth technique, and its crystal structure was determined from single-crystal X-ray intensity data (Mo-Kα, 293 K) in space P1, with a = 6.672(1), b = 6.719(1), c = 6.725(1) Å, α = 108.87(3), β = 106.72(3), γ = 107.61(3)°, V = 245.82(6) Å3, Z = 1, R(F) = 2.81%. The compound represents a novel structure type. K2.9Rb0.1ErSi3O9 is characterized by a mixed octahedral-tetrahedral framework, in which each corner of the isolated ErO6 octahedron (<Er—O> = 2.26 Å) is linked to infinite [Si3O9] chains extending approximately along [111]. This connectivity results in a microporous character with two different, narrow channels that extend parallel to [111] and [100] and host K+ cations. The atomic arrangement is strongly pseudorhombohedral. A single-crystal Raman spectrum of K2.9Rb0.1ErSi3O9 is in agreement with the low space-group symmetry. Relations to minerals and synthetic compounds based on [Si3O9] chains are discussed, revealing that the geometry of the chain in K2.9Rb0.1ErSi3O9 is similar to that in pectolite, NaCa2[HSi3O9].


Corresponding author


Hide All

Present address: Institute for Geosciences, Friedrich-Schiller University Jena, Burgweg 11, 07749 Germany.



Hide All
Ananias, D., Ferreira, P., Ferreira, A., Rocha, J., Rainho, J.P., Morais, C.M. and Carlos, L.D. (2001a) Synthesis and characterization of novel microporous framework cerium and europium silicates. Studies in Surface Science and Catalysis, 135, 845852.
Ananias, D., Ferreira, A., Rocha, J., Ferreira, P., Rainho, J.P., Morais, C. and Carlos, L.D. (20016) Novel microporous europium and terbium silicates. Journal of the American Chemical Society, 123, 57355742.
Ananias, D., Rainho, J.P., Ferreira, A., Lopes, M., Morais, C.M., Rocha, J. and Carlos, L.D. (2002) Synthesis and characterisation of Er(III) and Y(III) sodium silicates: Na3ErSi3O9, a new infrared emitter. Chemistry of Materials, 14, 17671772.
Ananias, D., Rainho, J.P., Ferreira, A., Rocha, J. and Carlos, L.D. (2004) The first examples of X-ray phosphors, and C-band infrared emitters based on microporous lanthanide silicates. Journal of Alloys and Compounds, 374, 219222.
Angel, R.J. (1985) Structural variation in wollastonite and bustamite. Mineralogical Magazine, 49, 3748.
Bakakin, V.V. and Solov'eva, L.P. (1970) Crystal structure of Fe3BeSi3O9(F,OH)2, an example of a wollastonite-like silicate chain based on iron. Kristallografiya, 15, 11441151.(in Russian).
Belokoneva, E.L., Sandomirskii, P.A., Simonov, M.A. and Belov, M.V. (1973) Crystal structure of cadmium pectolite NaHCd2[Si3O9]. Doklady Akademii Nauk SSSR, 212, 11051108.(in Russian).
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Ada Crystallographica, B47, 192-197.
Buerger, M.J. (1956) The arrangement of atoms in crystals of the wollastonite group of metasilicates. Proceedings of the National Academy of Sciences of the United States of America, 42, 113116.
Elwell, D. (1975) Flux growth. Pp. 185216 in: Crystal Growth (B.R. Pamplin, editor). International Series of Monographs on the Science of the Solid State, Vol. 6, Pergamon Press, Oxford, UK.
Ferreira, A., Ananias, D., Carlos, L.D., Morais, C.M. and Rocha, J. (2003) Novel microporous lanthanide silicates with tobermorite-like structure. Journal of the American Chemical Society, 125, 1457314579.
Filipenko, O.S., Dimitrova, O.V., Atovmyan, L.O. and Ponomarev, V.I. (1988) Hydrothermal synthesis and crystal structure of K6Lu2(Si6O18). Kristallografiya, 33, 11221127.(in Russian).
Fischer, R.X. and Tillmanns, E. (1988) The equivalent isotropic displacement factor. Ada Crystallographica, C44, 775-776.
Flack, H.D. (1983) On enantiomorph-polarity estima-tion. Ada Crystallographica, A39, 876-881.
Gard, J.A. and Taylor, H.F.W. (1960) The crystal structure of foshagite. Ada Crystallographica, 13, 785793.
Gelato, L.M. and Parthé, E. (1987) STRUCTURE TIDY — a computer program to standardize crystal structure data. Journal of Applied Crystallography, 20, 139143.
Genkina, E.A., Belokoneva, E.L., Mill, B.V., Butashin, A.V. and Maksimov, B.A. (1992) Synthesis and crystal structure of the new double silicate rubidium niobium silicate (RbNbSiO5 = Rb3Nb3[Si3O9]O6). Kristallografiya, 37, 606612.(in Russian).
Glasser, L.S. Dent, Gunawardane, R.P. and Howie, R.A. (1991) The crystal structure of sodium strontium silicate, Na4SrSi3O9. Zeitschrift fir Kristallographie, 197, 5965.
Hammer, V.M.F., Libowitzky, E. and Rossman, G.R. (1998) Single-crystal IR spectroscopy of very strong hydrogen bonds in pectolite, NaCa2[Si3O8(OH)], and serandite, NaMn2[Si3O8(OH)]. American Mineralogist, 83, 569576.
Hesse, K.F. (1984) Refinement of the crystal structure of wollastonite-2M (parawollastonite). Zeitschrift fur Kristallographie, 168, 9398.
Ilyushin, G.D. and Blatov, V.A. (2002) Crystal chemistry of zirconosilicates and their analogs: topological classification of MT frameworks and suprapolyhedral invariants. Ada Crystallographica, B58, 198-218.
Jovanovski, G., Makreski, P., Kaitner, K. and Boevd, B. (2009) Silicate minerals from Macedonia. Complementary use of vibrational spectroscopy and X-ray powder diffraction for identification and detection purposes. Croatica Chemica Ada, 82, 363386.
Kolitsch, U. and Tillmanns, E. (2004) Synthesis and crystal structure of a new microporous silicate with a mixed octahedral-tetrahedral framework: Cs3ScSi8O19. Mineralogical Magazine, 68, 677686.
Kolitsch, U., Wierzbicka, M. and Tillmanns, E. (2006) BaY2Si3O10, a new flux-grown trisilicate. Ada Crystallographica, C62, i97-i99.
Kolitsch, U., Wierzbicka-Wieczorek, M. and Tillmanns, E. (2009) Crystal chemistry and topology of two flux-grown yttrium silicates: BaKYSi2O7 and Cs3YSi8O19. The Canadian Mineralogist, 47, 421431.
Kostova, M.H., Ananias, D., Almeida Paz, F.A., Ferreira, A., Rocha, J. and Carlos, L.D. (2007) Evolution of photoluminescence across dimensionality in lanthanide silicates. The Journal of Physical Chemistry, B, 111, 35763582.
Lo, F.-R. and Lii, K.-H. (2005) High-temperature, high-pressure hydrothermal synthesis and characterization of a new framework stannosilicate: Cs2SnSi3O9. Journal of Solid State Chemistry, 178, 10171022.
Makarova, T.A., Stavitskaya, G.P. and Pivovarova, L.N. (1978) Synthesis and physicochemical study of serandite. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy, 14, 335340.(in Russian).
Makreski, P., Jovanovski, G., Gajovi, A., Biljan, T., Angelovski, D. and Jaimovic, R. (2006) Minerals from Macedonia. XVI. Vibrational spectra of some common appearing pyroxenes and pyroxenoids. Journal of Molecular Structure, 788, 102114.
Maksimov, B.A., Kalinin, V.P., Merinov, B.V., Ilyukhin, V.V. and Belov, N.V. (1980) The crystal structure of rare-earth Na, Y-metasilicate Na3YSi3O9. Doklady Akademii Nauk SSSR, 252, 875879.(in Russian).
Mellini, M. and Merlino, S. (1982) The crystal structure of cascandite, CaScSi3O8(OH). American Mineralogist, 67, 604609.
Ohashi, Y. and Finger, L.W. (1978) The role of octahedral cations in pyroxenoid crystal chemistry. I. Bustamite, wollastonite, and the pectolite-schizo-lite-serandite series. American Mineralogist, 63, 274288.
Peacor, D.R. and Buerger, M.J. (1962) Determination and refinement of the crystal structure of bustamite, CaMnSi2O6. Zeitschrift für Kristallographie, 117, 331343.
Ponomarev, V.I., Filipenko, O.S. and Atovmyan, L.O. (1988) Crystal structures of the K-Ho triorthosilicate K3HoSi3O8(OH)2 at 300 K and of the dehydration product K3HoSi3O9 at 880 K. Kristallografiya, 33, 98104.(in Russian).
Rocha, J. and Carlos, L.D. (2003) Microporous material containing lanthanide metals. Current Opinion in Solid State and Materials Science, 7, 199205.
Rocha, J., Ferreira, P., Carlos, L.D. and Ferreira, A. (2000) The first microporous framework cerium silicate. Angewandte Chemie, International Edition, 39, 32763279.
Rutstein, M.S. and White, W.B. (1971) Vibrational spectra of high-calcium pyroxenes and pyroxenoids. American Mineralogist, 56, 877887.
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographica, A32, 751-767.
Sheldrick, G.M. (2007) A short history of SHELX. Ada Crystallographica, A64, 112—122.
Simonov, M.A., Belokoneva, E.X. and Belov, N.V. (1978) Refined crystal structure of synthetic cadmium pectolite NaHCd2[Si3O9]. Doklady Akademii Nauk SSSR, 240, 843846.(in Russian).
Spek, A.L. (2003) Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36, 713.
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. E. Schweizerbart'sche Verlagsbuch- handlung, Stuttgart, Germany, 870 pp.
Takeuchi, Y., Kudoh, Y. and Yamanaka, T. (1976) Crystal chemistry of the serandite-pectolite series and related minerals. American Mineralogist, 61, 229237.
Tolksdorf, W. (1994) Flux growth. Pp. 563-611 in: Handbook of Crystal Growth (D.T.J. Hurle, editor). Vol. 2, Chapter 10, North-Holland, Amsterdam, The Netherlands.
Villafuerte-Castrejon, M.E., Dago, A. and Pomes, R. (1994) Crystal structure determination of Li2Ca4Si4O13. Journal of Solid State Chemistry, 112, 438440.
Wanklyn, B.M. (1975) Practical aspects of flux growth by spontaneous nucleation. Pp. 217-288 in: Crystal Growth (B.R. Pamplin, editor). International Series of Monographs on the Science of the Solid State, Vol. 6, Pergamon Press, Oxford, UK.
Weil, M. (2005) Parawollastonite-type Cd3[Si3O9]. Ada Crystallographica, E61, i102-i104.
Wierzbicka-Wieczorek, M. (2007) Syntheses, crystal structures and crystal chemistry of new mixed-framework silicates and a new molybdate structure type. PhD Thesis, Institute of Mineralogy and Crystallography, University of Vienna, Austria, 186 pp.
Wierzbicka-Wieczorek, M., Kolitsch, U. and Tillmanns, E. (2008a) Novel synthetic alkali-yttrium silicates with a new microporous mixed framework topology: (Rb,Cs)9Y7Si24O63 and isotypic Rb9Y7Si24O63. Crystal Research and Technology, 43, 12101219.
Wierzbicka-Wieczorek, M., Kolitsch, U. and Tillmanns, E. (2008b) Flux syntheses and crystal structures of new compounds with decorated kröhnkite-like chains. Ada Chimica Slovenica, 55, 909917.
Wierzbicka-Wieczorek, M., Kolitsch, U. and Tillmanns, E. (2010a) Preparation and structural study of five new trisilicates, SrY2Si3O10 and BaREE2Si3O10 (REE = Gd, Er, Yb, Sc), including a review on the geometry of the Si3Oi0 unit. European Journal of Mineralogy, 22, 245258.
Wierzbicka-Wieczorek, M., Kolitsch, U. and Tillmanns, E. (2010b) Flux growth and crystal structures of three new complex silicates of scandium. The Canadian Mineralogist, 48, 5168.


K2.9Rb0.1ErSi3O9: a novel, non-centrosymmetric chain silicate and its crystal structure

  • M. Wierzbicka-Wieczorek (a1), U. Kolitsch (a1) (a2), L. Nasdala (a1) and E. Tillmanns (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed