Skip to main content Accessibility help
×
Home

The influence of stereochemically active lone-pair electrons on crystal symmetry and twist angles in lead apatite-2H type structures

  • T. Baikie (a1), M. Schreyer (a2), F. Wei (a3), J. S. Herrin (a3) (a4), C. Ferraris (a5), F. Brink (a6), J. Topolska (a7), R. O. Piltz (a8), J. Price (a9) and T. J. White (a3)...

Abstract

Lead-containing (Pb-B-X)-2H apatites encompass a number of [AF ]4[AT ]6[(BO 4)6]X 2 compounds used for waste stabilization, environmental catalysis and ion conduction, but the influence of the stereochemically active lone-pair electrons of Pb2+ on crystal chemistry and functionality is poorly understood. This article presents a compilation of existing structural data for Pb apatites that demonstrate paired electrons of Pb2+ at both the AF and AT results in substantial adjustments to the Pb F O6 metaprism twist angle, φ. New structure refinements are presented for several natural varieties as a function of temperature by single-crystal X-ray diffraction (XRD) of vanadinite-2H (ideally Pb10(VO4)6Cl2), pyromorphite-2H (Pb10(PO4)6Cl2), mimetite-2H/M (Pb10(As5+O4)6Cl2) and finnemanite-2H (Pb10(As3+O3)6Cl2). A supercell for mimetite is confirmed using synchrotron single-crystal XRD. It is suggested the superstructure is necessary to accommodate displacement of the stereochemically active 6s2 lone-pair electrons on the Pb2+ that occupy a volume similar to an O2− anion. We propose that depending on the temperature and concentration of minor substitutional ions, the mimetite superstructure is a structural adaptation common to all Pb-containing apatites and by extension apatite electrolytes, where oxide ion interstitials are found at similar positions to the lonepair electrons. It is also shown that plumbous apatite framework flexes substantially through adjustments of the Pb F O6 metaprism twist-angles (φ) as the temperature changes. Finally, crystalchemical [100] zoning observed at submicron scales will probably impact on the treatment of diffraction data and may account for certain inconsistencies in reported structures.

Copyright

Corresponding author

References

Hide All
Aminoff, G. (1923) Finnemanit, ett nytt blyarsenit från Långban (Finnemanite, a new lead arsenite from Långban). Geologiska Föreningen i Stockholm Förhandlingar, 45, 160163.
Aminoff, G. and Parsons, A.L. (1927) Symmetry and lattice dimensions of finnemanite and mimetite. Geologiska Föreningen i Stockholm Förhandlingar, 49, 438440.
Andersson, S. and Åstrom, A. (1972) The stereochemistry of the inert pair in some solid oxides or oxide fluorides of Sb3+, Bi3+ and Pb2+. Pp 3–14 in: Solid State Chemistry – Proceedings of the 5th Materials Research Symposium, National Bureau of Standards Special Publication 364.
Audubert, F., Savariault, J.M. and Lacout, J.L. (1999) Pentaleadtris (vanadate) iodide, a defect vanadinitetype compound. Acta Crystallographica C, 55, 271273.
Azrour, M., El Ammari, L., Le Fur, Y. and Elouadi, B. (1998) Etude structurale d’orthovanadates d’alcalins et de plomb cristalisant avecla structure apatite lacunaire. Journal of Solid State Chemistry, 141, 373377.
Bahfenne, S. and Frost, R.L. (2010) Raman spectroscopic study of the mineral finnemanite Pb5(As3+O3)3Cl. Journal of Raman Spectroscopy, 41, 329333.
Baikie, T., Mercier, P.H.J., Elcombe, M.M., Kim, J.Y., Page, Y.L., Mitchell, L.D. and White, T.J. (2007) Triclinic Apatites. Acta Crystallographica B, 63, 251256.
Baikie, T., Ferraris, C., Klooster, W.T., Madhavi, S., Pramana, S.S., Pring, A. and Schmidt, G. (2008) The crystal chemistry and mimetite (Pb10(AsO4) 6Cl1.48O0.26) and finnemanite (Pb10(AsO3)6Cl2). Acta Crystallographica B, 64, 3441.
Baikie, T., Pramana, S.S., Ferraris, C., Huang, Y., Kendrick, E., Knight, K.S., Ahmad, Z. and White, T.J. (2010) Polysomatic apatites. Acta. Crystallographica B, 66, 116.
Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M.K., Wei, F., Mhaisalkar, S., Graetzel, M. and White, T.J. (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid state sensitised solar cell applications. Journal of Materials Chemistry A, 1, 56285641.
Barinova, A.V., Bonin, M., Pushcharovskii, D.Y., Rastsvetaeva, R.K., Schenk, K. and Dimitrova, O.V. (1998) Crystal structure of synthetic hydroxylpyromorphyte Pb5(PO4)3(OH). Kristallografiya, 42, 224227.
Bechade, E., Masson, O., Iwata, Y., Julien, I., Fukuda, K., Thomas, P. and Champion, E. (2009) Diffusion path and conduction mechanism of oxide ions in apatite-type lanthanum silicates. Chemistry of Materials, 21, 25082517.
Belokoneva, E.L., Troneva, E.A., Dem’yanets, L.N., Duderov, N.G. and Belov, N.V. (1982) Crystal structure of synthetic fluoropyromorphite Pb5(PO4)3F. Kristallografiya, 27, 793794.
Biagioni, C. and Pasero, M. (2013) The crystal structure of johnbaumite, Ca5(AsO4)3OH, the arsenate analogue of hydroxyapatite. American Mineralogist, 98, 15801584.
Bigi, A., Ripamonti, A., Brückner, S. Gazzano, M., Roveri, N. and Thomas, S.A. (1989) Structure refinements of lead-substituted calcium hydroxya patite by X-ray powder fitting. Acta Crystallographica B, 45, 247251.
Bruker (2008) Topas Version 4.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Calos, N.J. and Kennard, C.H.L. (1990) Crystal structure of mimetite, Pb5(AsO4)3Cl. Zeitschrift für Kristallographie, 191, 125129.
Carlson, S., Norrestam, R., Holstam, D. and Spengler, R. (1997) The crystal structure of ganomalite Pb9Ca5.44Mn0.56Si9O33 . Zeitschrift für Kristallographie, 212, 208212.
Dai, Y.S. and Hughes, J.M. (1989) Crystal structure refinements of vanadinite and pyromorphite. The Canadian Mineralogist, 27, 189192.
Dai, Y.S., Hughes, J.M. and Moore, P.B. (1991) The crystal structures of mimetite and clinomimetite. The Canadian Mineralogist, 29, 369376.
Dong, Z. and White, T.J. (2004a) Calcium-lead fluorovanadinite apatites. I Disequilibrium structures. Acta Crystallographica B, 60, 138145.
Dong, Z. and White, T.J. (2004b) Calcium-lead fluorovanadinite apatites. II. Equilbrium structures. Acta Crystallographica B, 60, 146154.
Dowty, E. (2002) ATOMS Version 6.0. Shape Software, Kingsport, Tennessee, USA.
Effenberger, H. and Pertlik, F. (1979) Die kristallstruktur des finnemanits, Pb5Cl(AsO3), mit einem vergleich zum strukturtyp des chlorapatits Ca5Cl(PO4)3. Tschermaks Mineralogische und Petrographische Mitteilungen, 26, 95107.
Elliott, P. (1991) Minerals of the Beltana Mine, Puttapa, South Australia. The Mineralogical Record, 22, 449456.
Engel, G. and Deppisch, B. (1988) Die kristallstruktur von Pb5(GeO4)2SO4 und Pb5(GeO4)2CrO4, zweier bleiapatite mit unbesetzten halogenlagen. Zeitschrift für Anorganische und Allgemeine Chemie, 562, 131140.
Eon, J.G., Boechat, C.B., Rossi, A.M., Terra, J. and Ellis, D.E. (2006) A structural analysis of lead hydroxyvanadinite. Physical Chemistry Chemical Physics, 8, 18451852.
Fleet, M.E., Liu, X. and Shieh, S.R. (2010) Structural change in lead fluorapatite at high pressure. Physics and Chemistry of Minerals, 37, 19.
Flis, J., Borkiewicz, O., Bajda, T., Manecki, M. and Klasa, J. (2010) Synchrotron-based X-ray diffraction of the lead apatite series Pb10(PO4)6Cl2 - Pb10(AsO4)6Cl2. Journal of Synchrotron Radiation, 17, 207214.
Gabrielson, O. (1955) The crystal structure of finnemanite Pb5Cl(AsO3)3. Arkiv für Kemi, Mineralogi och Geologi, 2, 18.
Giuseppetti, G., Rossi, G. and Tadini, C. (1971) The crystal structure of nasonite. American Mineralogist, 56, 11741179.
Grubb, P.L.C. (1971) Mineralogy and genesis of the Beltana zinc-lead deposit, Puttapa, South Australia. Journal of the Geological Society of Australia, 18, 165171.
Hamdi, B., El Feki, H., Salah, A.B., Salles, P., Baules, P. and Savariault, J.-M. (2006) Ionic conductivity and phase transition in Pb4.8Bi1.6Na3.6(PO4)6, an apatitetype compound. Solid State Ionics, 177, 14131420.
Hata, M., Marumo, F., Iwai, S. and Aoki, H. (1980) Structure of a lead apatite Pb9(PO4)6. Acta Crystallographica B, 36, 21282130.
Hendricks, S.B., Jefferson, M.E. and Mosley, V.M. (1932) The crystal structures of some natural and synthetic apatite-like substances. Zeitschrift für Kristallographie, 81, 352369.
Holten, T., Jamtveit, B. and Meakin, P. (2000) Noise and oscillatory zoning in minerals. Geochimica et Cosmochimica Acta, 64, 18931904.
Ivanov, S.A. and Zavodnik, V.E. (1989) Crystal structure of Pb5GeV2O12. Soviet Physics – Crystallography, 34, 493496.
Kabsch, W. (2010) XDS. Acta Crystallographica D, 66, 125132.
Kampf, A.R., Steele, I.M. and Jenkins, R.A. (2006) Phosphohedyphane, Ca2Pb3(PO4)3Cl, the phosphate analog of hedyphane: Description and crystal structure. American Mineralogist, 91, 19091917.
Kay, M.I., Newnham, R.E. and Wolfe, R.W. (1975) The crystal structure of the ferroelectric phase of Pb5Ge3O11. Ferroelectrics, 9, 16.
Keppler, U. (1968) Monokliner mimetsit, Pb5(AsO4)3Cl. Neues Jahrbuch für Mineralogie, Monatschefte, 1968, 359362.
Keppler, U. (1969) Zum modifikationswechsel chlorhaltiger apatite. Neues Jahrbuch für Mineralogie, Monatschefte, 1969, 6467.
Koumiri, M.E., Oishi, S., Sato, S., Ammari, L.E. and Elouadi, B. (2000) The crystal structure of the lacunar apatite NaPb4(PO4)3 . Materials Research Bulletin, 35, 503513.
Krivovichev, S.V. and Burns, P.V. (2003) Crystal chemistry of lead oxide phosphates: crystal structures of Pb4O(PO4)2, Pb8O5(PO4)2 and Pb10(PO4)6O. Zeitschrift für Kristallographie, 218, 357365.
Krivovichev, S.V., Armbruster, T. and Depmeier, W. (2004) One-dimensional lone electron pair micelles in the crystal structure of Pb5(SiO4)(VO4)2 . Materials Research Bulletin, 39, 17171722.
Lee, P.L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M.A., Von Dreele, R.B., Ribaud, L., Kurtz, C., Antao, S., Jiao, X. and Toby, B.H. (2008) A twelve-analyzer detector system for high-resolution powder diffraction. Journal of Synchrotron Radiation, 15, 427432.
León-Reina, L., Losilla, E.R., Martinez-Lara, M., Bruque, S. and Aranda, M.A.G. (2004) Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes. Journal of Materials Chemistry, 14, 11421149.
Lim, S., Baikie, T., Smith, R., Knight, K. and White, T.J. (2011) The apatite metaprism twist angle (F) as a tool for crystallochemical diagnosis. Journal of Solid State Chemistry, 184, 29782986.
Mathew, M., Brown, W.E., Austin, M. and Negas, T. (1980) Lead alkali apatites without hexad anion: the crystal structure Pb8K2(PO4)6 . Journal of Solid State Chemistry, 35, 6976.
Mills, S.J., Ferraris, G., Kampf, A.R. and Favreau, G. (2012) Twinning in pyromorphite: The first documented occurrence of twinning by merohedry in the apatite supergroup. American Mineralogist, 97, 415418.
Momma, K. and Izumi, F. (2008) VESTA: a threedimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.
Moore, P.B. and Shen, J. (1984) Roeblingite, Pb2Ca6(SO4)2(OH)2(H2O)4[Mn(Si3O9)2]: its crystal structure and comments on the lone-pair effect. American Mineralogist, 69, 11731179.
Naddari, T., Savariault, J.M., Feki, H.E., Salles, P. and Salah, A.B. (2002) Conductivity and structural investigations in lacunary Pb6Ca2Li2(PO4)6 apatite. Journal of Solid State Chemistry, 166, 237244.
Naddari, T., Feki, H.E., Savariault, J.M., Salles, P. and Salah, A.B. (2003) Structure and ionic conductivity of the lacunary apatite Pb6Ca2Na2(PO4)6 . Solid State Ionics, 158, 157166.
Noda, Y., Masumoto, K., Ohba, S., Saito, Y., Toriumi, K., Iwata, Y. and Shibuya, I. (1987) Temperature depedence of atomic thermal parameters of lead chalcogenides, PbS, PbSe and PbTe. Acta Crystallographica C, 43, 14431445.
Orera, A., Baikie, T., Kendrick, E., Shin, J.F., Pramana, S., Smith, R., White, T.J., Sanjuán, M.L. and Slater, P.R. (2011) Apatite germanates doped with tungsten: synthesis, structure and conductivity. Dalton Transactions, 40, 39033908.
Palatinus, L. and Chapuis, G. (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786790.
Panchmatia, P., Orera, A., Rees, G.J., Smith, M.E., Hanna, J.V., Slater, P.R. and Islam, M.S. (2001) Elucidation of oxygen defects and novel transport mechanisms in apatite fast-ion conductors: combined 17O NMR and modelling studies. Angewandte Chemie International Edition, 50, 93289333.
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J.F. and White, T.J. (2010) Nomenclature of apatite supergroup minerals. European Journal of Mineralogy, 22, 163179.
Petříček, V., Dusek, M. and Palatinus, L. (2006) JANA2006. The Crystallographic Computing System. Institute of Physics, Prague.
Philibert, J. (1963) X-ray Optics and X-ray Micro Analysis. Academic Press, New York, USA.
Philibert, J., and Tixier, R. (1968) Electron penetration and the atomic number correction in electron probe microanalysis. Journal of Applied Physics (Journal of Physics D), 1, 685694.
Reed, S.J.B. (1965) Characteristic fluorescence corrections in electron-probe microanalysis. British Journal of Applied Physics, 16, 913926.
Rouse, R.C., Dunn, P.J. and Peacor, D.R. (1984) Hedyphane from Franklin, New Jersey and Långban, Sweden: cation ordering in an arsenate apatite. American Mineralogy, 89, 920927.
Schneider, W. (1967) Caracolit, das Na3Pb2(SO4)3Cl mit Apatitstruktur. Neues Jahrbuch für Mineralogie, Monatshefte, 1967, 284289.
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751767.
Shore, M. and Fowler, A.D. (1996) Oscillatory zoning in minerals: a common phenomenon. The Canadian Mineralogist, 34, 11111126.
Sokolova, E.V., Egorov-Tismenko, Y.K. and Yakhontova, L.K. (1982) Research on crystal structures of rare arsenates: dufite and mimetite. Vestnik Moskovskogo universiteta, Seriia 4, Geologiia, 1982, 5056.
Trotter, J. and Barnes, W.H. (1958) The structure of vanadinite. The Canadian Mineralogist, 6, 161173.
Walsh, A. and Watson, G.W. (2005) The origin of the stereochemically active Pb(II) lone pair: DFT calculations of PbO and PbS. Journal of Solid State Chemistry, 178, 14221428.
Walsh, A., Payne, D.J., Egdell, R.G. and Watson, G.W. (2011) Stereochemistry of post-transition metal oxides: revision of the classical lone-pair model. Chemical Society Reviews, 40, 44554463.
White, T.J. and Dong, Z. (2003) Structural derivation and crystal chemistry of apatites. Acta Crystallographica B, 59, 116.
White, T.J. and Toor, I.A. (1996) Stabilizing toxic metal concentrates using SMITE. Journal of the Minerals Metals & Materials Society, 48, 5458.
Yang, Z., Ding, K., de Fourestier, J. and Li, H. (2013) The crystal structure of mimetite-2M, a new polymorph of mimetite from Xianghualing tinpolymetalic orefield, Hunan Province, R. R. China. Neues Jahrbuch für Mineralogie – Abhandlungen, 190(2), 229235.

Keywords

Type Description Title
PDF
Supplementary materials

Baikie et al. supplementary material
Supplemental information. Tables S1-21, Figs S1-3

 PDF (873 KB)
873 KB

The influence of stereochemically active lone-pair electrons on crystal symmetry and twist angles in lead apatite-2H type structures

  • T. Baikie (a1), M. Schreyer (a2), F. Wei (a3), J. S. Herrin (a3) (a4), C. Ferraris (a5), F. Brink (a6), J. Topolska (a7), R. O. Piltz (a8), J. Price (a9) and T. J. White (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.