Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T23:54:39.657Z Has data issue: false hasContentIssue false

Hydroxyplumbopyrochlore, (Pb1.5,□0.5)Nb2O6(OH), a new member of the pyrochlore group from Jabal Sayid, Saudi Arabia

Published online by Cambridge University Press:  10 September 2020

Ting Li*
Affiliation:
Beijing Research Institute of Uranium Geology, CNNC, Beijing100029, China
Ziying Li
Affiliation:
Beijing Research Institute of Uranium Geology, CNNC, Beijing100029, China
Guang Fan
Affiliation:
Beijing Research Institute of Uranium Geology, CNNC, Beijing100029, China
Honghai Fan
Affiliation:
Beijing Research Institute of Uranium Geology, CNNC, Beijing100029, China
Jun Zhong
Affiliation:
Beijing Research Institute of Uranium Geology, CNNC, Beijing100029, China
Naser S. Jahdali
Affiliation:
Saudi Geological Survey, P. O. Box 54141, Jeddah21514, Saudi Arabia
Mingkuan Qin
Affiliation:
Beijing Research Institute of Uranium Geology, CNNC, Beijing100029, China
Abdullah M. Jehani
Affiliation:
Saudi Geological Survey, P. O. Box 54141, Jeddah21514, Saudi Arabia
Fenggang Wang
Affiliation:
Beijing Research Institute of Uranium Geology, CNNC, Beijing100029, China
Mubarak M. Nahdi
Affiliation:
Saudi Geological Survey, P. O. Box 54141, Jeddah21514, Saudi Arabia
*
*Author for correspondence: Ting Li, Email: liting_c@126.com

Abstract

A new mineral species of the pyrochlore supergroup, hydroxyplumbopyrochlore (IMA2018-145), (Pb1.5,□0.5)Nb2O6(OH), has been discovered in the Jabal Sayid peralkaline granitic complex of the Arabian Shield, Saudi Arabia. It is associated with quartz, microcline, ‘biotite’, rutile, zircon, calcite, rhodochrosite, columbite-(Fe), goethite, thorite, bastnäsite-(Ce), xenotime-(Y), samarskite-(Y), euxenite-(Y), hydropyrochlore and fluornatropyrochlore. Hydroxyplumbopyrochlore usually shows euhedral octahedra, slightly rhombic dodecahedra and cubes or their combination (0.01–0.06 mm). The mineral is pale yellow to pale brown, transparent with white streak, and has adamantine to transparent lustre. It is brittle with conchoidal fracture. No cleavage or parting are observed. It is isotropic and non-fluorescent. The average microhardness is 463.4 kg mm–2. The calculated density is 6.474 g cm–3.

Hydroxyplumbopyrochlore belongs to the cubic crystal system and exhibits the space group Fd$\bar{3}$m with unit-cell parameters a = 10.5456(6) Å, V = 1172.8(2) Å3 and Z = 8. Electron microprobe analysis gave (6-point average composition, wt.%): CaO 0.32, SrO 0.16, FeO 0.17, Ce2O3 0.07, Pr2O3 0.02, PbO 51.69, Nb2O5 40.06, SiO2 0.05, TiO2 1.68, Ta2O5 4.74, H2Ocalc 0.95, total 99.90, yielding the empirical formula (Pb1.34Ca0.03Fe0.01Sr0.010.61)Σ2(Nb1.75Ti0.12Ta0.12Si0.01)Σ2O6(OH0.53O0.080.39)Σ1, where □ = vacancy. The Raman spectrum of hydroxyplumbopyrochlore contains the characteristic bands of O–H vibrations and no bands for H2O vibrations.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Daniel Atencio

References

Agakhanov, A.A., Kasatkin, A.V., Britvin, S.N., Siidra, O.I., Pautov, L.A., Pekov, I.V. and Karpenko, V.Y. (2017) Cesiokenopyrochlore, IMA 2016-104. CNMNC Newsletter No. 36. Mineralogical Magazine, 81, 403409.Google Scholar
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Bahfenne, S. and Frost, R.L. (2010) Raman spectroscopic study of the antimonate mineral roméite. Spectrochimica Acta A, 75, 637639.CrossRefGoogle ScholarPubMed
Beurlen, H., Soares, D.R., Thomas, R., Prado-Borges, L.E. and Castro, C. (2005) Mineral chemistry of tantalate species new in the Borborema Pegmatitic Province, northeast Brazil. Anais da Academia Brasileira de Ciências, 77, 169182.CrossRefGoogle Scholar
Biagioni, C., Gieré, R., Meisser, N., Nestola, F., Pasero, M., Robyr, M., Roth, P. and Schnyder, C. (2017) Hydrokenopyrochlore, IMA 2017-005. CNMNC Newsletter No. 37. Mineralogical Magazine, 81, 737742.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (2002) New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia. European Journal of Mineralogy, 14, 821836.CrossRefGoogle Scholar
Chukanov, N.V., Blaß, G., Zubkova, N.V., Pekov, I.V., Pushcharovskii, D.Y. and Prinz, H. (2013) Hydroxymanganopyrochlore: A new mineral from the Eifel volcanic region, Germany. Doklady Earth Sciences, 449, 342345 [in English].CrossRefGoogle Scholar
Dostal, J., Kontak, D.J. and Karl, S.M. (2014) The Early Jurassic Bokan Moutain peralkaline granitic complex (southeastern Alaska): Geochemistry, petrogenesis and rare-metal mineralization. Lithos, 202–203, 395412.CrossRefGoogle Scholar
Estrade, G., Salvi, S., Beziat, D., Rakotovao, S. and Rokotondrazafy, R. (2014) REE and HFSE mineralization in peralkaline granites of the Ambohimirahavavy alkaline complex, Ampasindava Peninsula, Madgascar. Journal of African Earth Sciences, 94, 141155.CrossRefGoogle Scholar
Gysi, A.P. and Williams-Jones, A.E. (2013) Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model. Geochimica et Cosmochimica Acta, 122, 324352.CrossRefGoogle Scholar
Harris, N.B.W. and Marriner, G.F. (1980) Geochemistry and petrogenesis of a peralkaline granite complex from the Midian Mountains, Saudi Arabia. Lithos, 13, 325337.CrossRefGoogle Scholar
Ivanyuk, G.Y., Yakovenchuk, V.N., Panik orovskii, T.L., Konoplyova, N., Pakhomovsky, Y.A., Bazai, A.V., Bocharov, V.N. and Krivovichev, S.V. (2017) Hydroxynatropyrochlore, (Na,Ca,Ce)2Nb2O6(OH), a new member of the pyrochlore group from the Kovdor phoscoritecarbonatite pipe (Kola Peninsula, Russia). Mineralogical Magazine, 83, 107113.CrossRefGoogle Scholar
Kartashov, P.M., Voloshin, A.V. and Pakhomovskiy, Y.A. (1992) On plumbopyrochlore from Western Mongolia. Doklady Akademii Nauk SSSR, 322, 11371140 [(in Russian].Google Scholar
Kovalenko, V.I., Tsaryeva, G.M., Goreglyad, A.V., Yarmolyuk, V.V., Troitsky, V.A., Hervig, R.L. and Farmer, G.L. (1995) The peralkaline granite-related Khaldzan–Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia. Economic Geology, 90, 530547.CrossRefGoogle Scholar
Li, G.W., Yang, G.M., Lu, F.D., Xiong, M., Ge, X.K., Pan, B.M. and Fourestier, J.D. (2016) Fluorcalciopyrochlore, a new mineral species from Bayan Obo, Inner Mongolia, P.R. China. The Canadian Mineralogist, 54, 12851291.Google Scholar
Li, T., Li, Z., Fan, G., Fan, H., Zhong, J., Jahdali, N.S., Qin, M., Jehani, A.M., Wang, F. and Nahdi, M.M. (2020) Hydroxyplumbopyrochlore, IMA 2018-145. CNMNC Newsletter No. 54; Mineralogical Magazine, 84, https://doi.org/10.1180/mgm.2020.21Google Scholar
Mandarino, J.A. (1979) The Gladstone-Dale relationship: Part III: Some general applications. The Canadian Mineralogist, 17, 7l76.Google Scholar
Miyawaki, R., Momma, K., Matsubara, S., Sano, T., Shigeoka, M. and Horiuchi, H. (2017) Hydroxykenopyrochlore, IMA 2017-030a. CNMNC Newsletter No. 39. Mineralogical Magazine, 81, 12791286.Google Scholar
Sheldrick, G.M. (2015) SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Skorobogatova, N.V., Sidorenko, G.A., Dorofeeva, K.A. and Stolyarova, T.I. (1966) Plumbopyrochlore. Geologiya Mestorozhdenii Redkikh Elementov, 30, 8495 [in Russian].Google Scholar
Voloshin, A.V. and Pakhomovskiy, Y.A. (1986) Minerals and Evolution of Mineral Formation in Amazonite Pegmatites of Kola Peninsula. Nauka, Leningrad, Russia.Google Scholar
Voloshin, A.V., Pakhomovskiy, Y.A. and Bakhchisaraytsev, A.Y. (1993) Plumbobetafite in amazonite pegmatites of western Keyv (Kola Peninsula). Mineralogicheskiy Zhurnal, 15, 7680 [in Russian].Google Scholar
Wang, R.C., Fontan, F., Chen, X.M., Hu, H.L., Chang, S., Xu, S.J. and De Parseval, P. (2003) Accessory minerals in the Xihuashan Y-enriched granitic complex, southern China: a record of magmatic and hydrothermal stages of evolution. The Canadian Mineralogist, 41, 727748.CrossRefGoogle Scholar
Xie, L., Wang, R.C., Wang, D.Z. and Qiu, J.S. (2006) A survey of accessory mineral assemblages in peralkaline and more aluminous A-type granites of the southeast coastal area of China. Mineralogical Magazine, 70, 709729.CrossRefGoogle Scholar
Yang, G.M., Li, G.W., Xiong, M., Pan, B.M. and Yan, C.J. (2014) Hydroxycalciopyrochlore, a new mineral species from Sichuan, China. Acta Geologica Sinica (English Edition), 88, 748753.CrossRefGoogle Scholar
Yin, J.W., Li, G.W., Yang, G.M., Ge, X.K., Xu, H.M. and Wang, J. (2015) Fluornatropyrochlore, a new pyrochlore supergroup mineral from the Boziguoer rare earth element deposit, Baicheng county, Akesu, Xinjiang, China. The Canadian Mineralogist, 53, 455460.Google Scholar
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 1

Download Li et al. supplementary material(File)
File 12.1 KB
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 2

Download Li et al. supplementary material(File)
File 363.6 KB