Skip to main content Accessibility help
×
Home

Hitachiite, Pb5Bi2Te2S6, a new mineral from the Hitachi mine, Ibaraki Prefecture, Japan

  • Takahiro Kuribayashi (a1), Toshiro Nagase (a2), Tatsuo Nozaki (a3) (a4) (a5) (a6), Junichiro Ishibashi (a7), Kazuhiko Shimada (a7), Masaaki Shimizu (a8) and Koichi Momma (a9)...

Abstract

Hitachiite, Pb5Bi2Te2S6, is a new mineral discovered in the Hitachi mine, located in the Ibaraki Prefecture of Japan. The mean of 21 electron microprobe analyses gave: Pb 52.01, Bi 23.06, Fe 0.69, Sb 0.17, Te 13.74, S 9.71, Se 0.54, total 100.04 wt.%. The empirical chemical formula based on 15 apfu is (Pb4.75Fe0.23)Σ4.98(Bi2.09Sb0.03)Σ2.12Te2.04(S5.73Se0.13)Σ5.86, ideally Pb5Bi2Te2S6. Synchrotron single-crystal X-ray diffraction experiments indicated that hitachiite has trigonal symmetry, space group P ${\bar 3}$ m1, with a = 4.2200(13) Å, c = 27.02(4) Å and Z = 1. The four strongest diffraction peaks shown in the powder X-ray pattern [d, Å (I)(hkl)] are: 3.541(35)(012), 3.391(59)(013), 3.039(100)(015) and 2.114(56)(110). The calculated density (Dcalc) for the empirical chemical formula is 7.54 g/cm3.

The crystal structure of hitachiite has been refined using synchrotron single-crystal X-ray diffraction data, to R = 7.38% and is based on ABC-type stacking of 15 layers (five Pb, two Bi, two Te, and six S layers) along the [001] direction, and with each layer ideally containing only one kind of atom. The stacking sequence is described as Te–Bi–S–Pb–S–Pb–S–Pb–S–Pb–S–Pb–S–Bi–Te. The discovery of hitachiite implies that the minerals of the Bi2Te2S–PbS join might form a homologous series of Bi2Te2nPbS.

Copyright

Corresponding author

*Author for correspondence: T. Kuribayashi, Email: takahiro.kuribayashi.a7@tohoku.ac.jp

Footnotes

Hide All

Associate Editor: František Laufek

Footnotes

References

Hide All
Bayliss, P. (1991) Crystal chemistry and crystallography of some minerals in the tetradymite group. American Mineralogist, 76, 257265.
Bindi, L. and Cipriani, C. (2003) Plumbian baksanite from Tyrnyauz W–Mo deposit, Baksan river valley, northern Caucasus, Russian Federation. The Canadian Mineralogist, 41, 14751479.
Cook, N.J., Ciobanu, C.L., Stanley, C.J., Paar, W.H. and Sundblad, K. (2007 a) Compositional data for Bi–Pb tellurosulfides. The Canadian Mineralogist, 45, 417435.
Cook, N.J., Ciobanu, C.L., Wagner, T. and Stanley, C.J. (2007 b) Minerals of the system Bi–Te–Se–S related to the tetradymite archetype. The Canadian Mineralogist, 45, 665708.
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.
Harker, D. (1934) The crystal structure of the mineral tetradymite, Bi2Te2S. Zeit für Kristallographie, 89, 175181.
Imamov, P.M. and Semiletov, S.A. (1971) The crystal structure of the phases in the system Bi–Se, Bi–Te, and Sb–Te. Soviet Physics Crystallography, 15, 845850.
Kase, K. (1978) Sulfide Minerals of the Hitachi deposits and their comparison with those of the Bessi deposit – studies on sulfide minerals in metamorphosed ores of the Bessi and Hitachi copper deposits (2). Mining Geology, 28, 1324.
Kase, K. and Yamomoto, M. (1985) Geochemical study of conformable massive sulfide deposits of the Hitachi mine, Ibaraki Prefecture, Japan. Mining Geology, 35, 1729.
Kuribayashi, T., Nagase, T., Nozaki, T., Ishibashi, J., Shimada, K., Shimizu, M. and Momma, K. (2018) Hitachiite, IMA 2018-027. CNMNC Newsletter No. 44, August 2018, page 1018; Mineralogical Magazine, 82, 1015–1021.
Kuznetsov, V.G. and Kanishcheva, A.S. (1970) X–ray investigation of alloys of the system Bi2Te3–Bi2S3. Inorganic Materials, 6, 11131116.
Liu, H. and Chang, L.Y. (1994) Lead and bismuth chalcogenide systems. American Mineralogist, 79, 11591166.
Makovicky, E. (2006) Crystal structures of sulphides and other chalcogenides. Pp. 7125 in: Sulfide Mineralogy and Geochemistry (Vaughan, D.J., editor). Reviews in Mineralogy and Geochemistry, 61. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup–Moøller, S., Balic–Žunic, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of sulfosalt sub-committee of the IMA commission on ore mineralogy. European Journal of Mineralogy, 20, 746.
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystals, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.
Nakajima, S. (1963) The crystal structure of Bi2Te3–xSex. Journal of Physics and Chemistry of Solids, 24, 479485.
Nakamuta, Y. (1999) Precise analysis of a very small mineral by an X–ray diffraction method. Journal of the Mineralogical Society of Japan, 28, 117121 [in Japanese with English abstract].
Noda, Y., Masumoto, K., Ohba, S., Saito, Y., Toriumi, K., Iwata, Y. and Shibuya, I. (1987) Temperature dependence of atomic thermal parameters of lead chalcogenides, PbS, PbSe and PbTe. Acta Crystallographica, C43, 14431445.
Nozaki, T., Kato, Y. and Suzuki, K. (2014) Re–Os geochronology of the Hitachi volcanic massive sulfide deposit: The oldest ore deposit in Japan. Economic Geology, 109, 20232034.
Oszlanyi, G. and Suto, A. (2004) Ab initio structure solution by charge flipping, Acta Crystallographica, A60, 134141.
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 456462.
Parkin, S.Moezzi, B. and Hope, H. (1995) XABS2: an empirical absorption correction program. Journal of Applied Crystallography, 28, 5356.
Pauling, L. (1975) The formula, structure and chemical bonding of tetradymite Bi14Te13S8–Bi14Te15S6. American Mineralogist, 60, 994997.
Prince, E. (editor) (2004) International Tables for X–ray Crystallography. Volume C: Mathematical, Physical and Chemical Tables. 3rd edition. International Union of Crystallography. Kluwer Academic Publisher, Dordrecht, Netherlands.
Sheldrick, G.M. and Schneider, T.R. (1997) SHELXL: high–resolution refinement. Methods in Enzymology, 277, 319343.
Shelimova, L.E., Karpinski, O.G, Svechnikova, T.E., Avilov, E.S., Kretova, M.A. and Zemskov, V.S. (2004) Synthesis and structure of layered compounds in the PbTe–Bi2Te3 and PbTe–Sb2Te3 systems. Inorganic Materials, 40, 12641270.
Shimazaki, H. and Ozawa, T. (1978) Tsumoite, BiTe, a new mineral from the Tsumo mine, Japan. American Mineralogist, 63, 11621165.
Strunz, H. and Nickel, E.H. (2001) Class 2. SULFIDES and SULFOSALTS. pp. 56147 in: Strunz Mineralogical Tables 9th Edition. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart, Germany.
Tagiri, M., Dunkley, D.J., Adachi, T., Hiroi, Y. and Fanning, C.M. (2011) SHRIMP dating of magmatism in the Hitachi metamorphic terrane, Abukuma Belt, Japan: Evidence for a Cambrian volcanic arc. Island Arc, 20, 259279.
Talybov, A.G. and Vainshtein, B.K. (1962) An electron diffraction study of the second superlattice in PbBi4Te7. Kristallografiya, 7, 4350.
Zhukova, T.B. and Zaslavskii, A.I. (1972) Crystal structures of the compounds PbBi4Te7 PbBi2Te4 SnBi4Te7 SnBi2Te4 SnSb2Te4 and GeBi4Te7. Kristallografiya, 16, 918922.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Kuribayashi et al. supplementary material
Kuribayashi et al. supplementary material

 Unknown (140 KB)
140 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed