Skip to main content Accessibility help

High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons

  • J. Götze (a1), U. Kempe (a1), D. Habermann (a2), L. Nasdala (a3), R. D. Neuser (a2) and D. K. Richter (a2)...


Cathodoluminescence (CL) microscopy and spectroscopy combined with SHRIMP ion probe measurements were carried out on detrital zircons from the Cretaceous Weferlingen quartz sand (Germany) to distinguish and characterize different zircon populations.

Investigations by CL microscopy, SEM-CL and BSE imaging show that there are three main types of zircons (general grain sizes of 100–200 µm): (1) apparently weakly zoned, rounded grains with relict cores, (2) well rounded fragments of optically more or less homogeneous zircon grains showing CL zoning predominantly parallel to the z-axis, and (3) idiomorphic to slightly rounded zircon grains typically showing oscillatory euhedral CL zoning. A fourth type of low abundance is characterized by well-rounded grain fragments with an irregular internal structure showing bright yellow CL.

High-resolution CL spectroscopic analyses reveal that blue CL is mainly caused by an intrinsic emission band centered near 430 nm. Dy3+ is the dominant activator element in all zircons, whereas Sm3+, Tb3+, Nd3+ have minor importance. Yellow CL (emission band between 500 and 700 nm) is probably caused by electron defects localized on the [SiO4] groups (e.g. related to oxygen vacancies) or activation by Yb2+ generated by radiation. Variations of the integral SEM-CL intensity are mainly controlled by the intensity of the broad bands and the Dy3+ peaks.

SHRIMP analysis provides in situ high-resolution U-Pb dating of single zircon grains and confirms different ages for the evaluated different zircon types. The measurements show that the U-Pb ages of the zircons from Weferlingen scatter over a wide range (340 to 1750 Ma), backing up earlier conclusions that the quartz sand from Weferlingen is quite heterogeneous in terms of provenance.



Hide All
Cesbron, F., Ohnenstetter, D., Blanc, P., Rouer, O. and Sichere, M.-C. (1993) Incorporation de terres rares dans zircons de synthèse: étude par cathodoluminescence. C. R. Acad. Sci. Paris, 316, série II, 1231–8.
Compston, W., Williams, I.S. and Meyer, C. (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe, J. Geophys. Res., 89, B525–34.
Götze, J. (1995) Genetic information of accessory minerals in clastic sediments. Zbl. Geol. Paläont., Teil I, H 1/2, 101–18.
Götze, J. (1997) Mineralogy and geochemistry of German high-purity quartz sands. In Mineral Deposits: Research and Exploration (Papunen, H., ed.). Balkema, Rotterdam Brookfield, 721–4.
Hoffmann, J.F. and Long, J.V.P. (1984) Unusual sector zoning in Lewisian zircons. Mineral. Mag., 48, 513–7.
Iacconi, P., Deville, A. and Galliard, B. (1980) Trapping and emission centres in X-irradiated zircon. (II): Contribution of the SiO4 4− groups. Phys. Stat. Sol. (a), 59, 639–46.
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C. and Essling, A.M. (1971) Precision measurement of the half-lives and specific activities of U235 and U238. Phys. Rev. C, 4, 1889–907.
Kempe, U., Gruner, T., Nasdala, L. and Wolf, D. (1998) Relevance of cathodoluminescence for interpretation of U-Pb zircon ages (with an example of application to a study of zircons from the Saxonian Granulite Complex, Germany). In Cathodoluminescence in Geosciences (Pagel, M et al., eds). Springer Verlag (in the press).
Krbetschek, M.R., Götze, J., Dietrich, A. and Trautmann, T. (1998) Spectral infmmation from minerals relevant for luminescence dating. Radiat. Measurements, 27, 695748.
Marfunin, A.S. (1979) Spectroscopy, Luminescence and Radiation Centers in Minerals. Springer Verlag, Berlin, 352 p.
Neuser, R.D., Bruhn, F., Götze, J., Habermann, D. and Richter, D.K. (1995) Cathodoluminescence: Method and application. Zbl. Geol. Paläont.,Teil I, H 112, 287306.
Nicholas, J.V. (1967) Origin of the luminescence in natural zircon. Nature, 215, 1476.
Pidgeon, R.T., Furfaro, D., Kennedy, A.K., Nemchin, A.A. and van Bronswijk, W. (1994) Calibration of zircon standards for the Curtin SHRIMP II. In: 8th Conf. Geochronol. Cosmochronol. Isotope Geol., Berkeley, U.S. Geol. Surv. Circular, 1107, 25l.
Remond, G., Cesbron, F., Chapoulie, R., Ohnenstetter, D., Roques-Carmes, C. and Schvnerer, M. (1992) Cathodoluminescence applied to the microcharacterization of mineral materials: a present status in experimentation and interpretation. Scanning Microscopy, 6, 2368.
Smith, J.B., Barley, M.E., Groves, D.I., Krapez, B., McNaughton, N.J., Bickle, M.J. and Chapman, H.J. (1998) The Sholl Shear Zone, West Pilbara: evidence for a domain boundary structure from integrated tectonostratigraphic analyses, SHRIMP U-Pb dating and isotopic and geochemical data of granitoids. Precamb. Res., 88, 143–71.


High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons

  • J. Götze (a1), U. Kempe (a1), D. Habermann (a2), L. Nasdala (a3), R. D. Neuser (a2) and D. K. Richter (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed