Skip to main content Accessibility help
×
Home

The geochemical and isotopic composition of ground waters in West Bengal: tracing ground-surface water interaction and its role in arsenic release

  • M. Lawson (a1), C. J. Ballentine (a1), D. A. Polya (a1), A. J. Boyce (a2), D. Mondal (a1), D. Chatterjee (a3), S. Majumder (a3) and A. Biswas (a3)...

Abstract

In many areas of south and south-eastern Asia, concentrations of As in ground water have been found to exceed the WHO maximum concentration limit of 10 μg/l. This is adversely affecting the health of millions of people and has grave current and future health implications. It has recently been suggested that extensive abstraction of ground water in these areas may accelerate the release of As to ground water. This study uses geochemical and isotopic data to assess this hypothesis. The area investigated in this study is in the Chakdaha block of the Nadia District, West Bengal. The ground water is predominantly of the Ca-Mg-HCO3 type, although some samples were found to contain elevated concentrations of Na, Cl and SO4. This is thought to reflect a greater degree of water-rock interaction at the locations of these particular samples. Arsenic concentrations exceeded the national limit of 50 μg/l in 13 of the 22 samples collected. Four of the 13 samples with high As were recovered from tubewells with depths of 60 m or more. Shallow ground water samples were found to have a stable isotopic composition which falls subparallel to the Global Meteoric Water Line. This probably represents a contribution of evaporated surface water to the ground water, possibly from surface ponds or re-infiltrating irrigation water. Deep ground water, conversely, was shown to have a composition that closely reflects that of meteoric water. The data presented in this study suggest that, whilst the drawdown of surface waters may drive As release in shallow ground waters, it is not responsible for driving As release in deep ground water. However, local abstraction may have resulted in changes in the ground water flow regime of the area, with contaminated shallow ground waters being drawn into previously uncontaminated deep aquifers.

Copyright

Corresponding author

References

Hide All
Balga, P. and Kaiser, J. (1996) India's spreading health crisis draws global arsenic experts. Science, 274, 174–175.
Berg, M., Tranm, H.C., Nguyen, T.C., Pham, H.V., Schertenleib, R. and Giger, W. (2001) Arsenic contamination of ground and drinking water in Vietnam: a human health threat. Environmental Science and Technology, 35, 2621–2626.
Berg, M., Stengel, C. Trang, P.T.K., Viet, P.H., Sampson, M.L., Leng, M., Samreth, S. and Fredericks, D. (2007) Magnitude of arsenic pollution in the Mekong and Red River Deltas — Cambodia and Vietnam. Science of the Total Environment, 372, 413–425.
BGS and DPHE (2001) Arsenic contamination of groundwater in Bangladesh, hi: British Geological Survey Report. WC/00/1. (Kinniburgh, D. G. and Smedley, P. L., editors). British Geological Survey, UK.
Chakraborty, A.K. and Sana, K.C. (1987) Arsenical dermatosis from tubewell water in West Bengal, India. Indian Journal of Medical Research, 85, 326–334.
Charlet, L. and Polya, D.A. (2006) Arsenic in shallow reducing groundwaters in southern Asia: an environmental health disaster. Elements, 2, 91–96.
Gonfiantini, R., Dincer, T. and Derekoy, A.M. (1974) Environmental isotope hydrology in the Honda Region, Algeria. Pp. 293–316 in: Isotope Techniques in Groundwater Hydrology 1974. IAEA, Vienna.
Harvey, C.F., Swartz, C.H., Badruzzaman, A.B.M., Keon-Blute, N., Yu, W., Ashraf, A.M., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P.M., Ashfaque, K.N., Islam, S., Hemond, H.F., and Ahmed, M.F. (2002) Arsenic mobility and ground-water extraction in Bangladesh. Science, 298, 1602–1606.
Islam, F.S., Gault, A.G., Boothman, C, Polya, D.A., Charnock, J.M., Chatterjee, D. and Lloyd, J.R. (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Natur. 430, 68–71.
Polya, D.A., Gault, A.G., Diebe, N., Feldman, P., Rosenboom, J.W., Gilligan, E., Fredericks, D., Milton, A.H., Sampson, M., Rowland, H.A.L., Lythgoe, P.R., Jones, J.C., Middleton, C. and Cooke, D.A. (2005) Arsenic hazard in shallow Cambodian groundwaters. Mineralogical Magazine, 69, 807–823.
van Geen, A., Ahmed, KM., Seddique, A.A. and Shamsudduha, M. (2003) Community wells to mitigate the current arsenic crisis in Bangladesh. Bulletin of the World Health Organization, 82, 632–638.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed