Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T13:06:39.277Z Has data issue: false hasContentIssue false

From structure topology to chemical composition. VI. Titanium silicates: the crystal structure and crystal chemistry of bornemanite, a group III Ti-disilicate mineral

Published online by Cambridge University Press:  05 July 2018

F. Cámara*
Affiliation:
CNR – Istituto di Geoscienze e Georisorse, Unitàdi Pavia, Via Ferrata 1, I-27100 Pavia, Italy
E. Sokolova
Affiliation:
CNR – Istituto di Geoscienze e Georisorse, Unitàdi Pavia, Via Ferrata 1, I-27100 Pavia, Italy Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Moscow, 119017, Russia

Abstract

The crystal structure of bornemanite, ideally Na6☐BaTi2Nb(Si2O7)2(PO4)O2(OH)F, a = 5.4587(3), b = 7.1421(5), c = 24.528(2) Å, α = 96.790(1), β = 96.927(1), γ = 90.326(1)°, V = 942.4(2) Å3, space group (P1̄), Z = 2, Dcalc. = 3.342 g cm–3, from the Lovozero alkaline massif, Kola Peninsula, Russia, has been solved and refined to R1 = 6.36% on the basis of 4414 unique reflections (Fo >4sF). Electron microprobe analysis yielded the empirical formula (Na6.07Mn2+0.23Ca0.060.64)Σ7.00 (Ba0.73K0.13Sr0.060.08)Σ1.00(Ti2.05Nb0.80Zr0.02Ta5+0.01Fe3+0.03Al0.02Mn2+0.06Mg0.01)Σ3.00(Si2O7)2(P0.97O4)O2 [F1.27(OH)0.74]Σ2.01. The crystal structure of bornemanite is a combination of a TS (titanium silicate) block and an I (intermediate) block. The TS block consists of HOH sheets (H-heteropolyhedral, O-octahedral). The TS block exhibits linkage and stereochemistry typical for Group III (Ti = 3 a.p.f.u.) of Ti-disilicate minerals: two H sheets connect to the O sheet such that two (Si2O7) groups link to the trans edges of a Ti octahedron of the O sheet. The O sheet cations give Na3Ti (4 a.p.f.u.). The TS block has two different H sheets, H1 and H2, where (Si2O7) groups link to [5]Ti and [6]Nb polyhedra, and there are two peripheral sites which are occupied by Ba and Na, respectively. There are two I blocks: the I1 block is a layer of Ba atoms; the I2 block consists of Na polyhedra and (PO4) tetrahedra.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belov, N.V., Gavrilova, G.S., Solov’eva, L.P. and Khalilov, A.D. (1977) Refined structure of lomono– sovite. Soviet Physics Doklady, 22, 422–424.Google Scholar
Brown, I.D. (1981) The bond–valence method: an empirical approach to chemical structure and bonding. Pp. 1–30 in: Structure and Bonding in Crystals II (O’Keeffe, M. and Navrotsky, A., editors). Academic Press, New York.Google Scholar
Chernov, A.N., Ilyukhin, V.V., Maksimov, B.A. and Belov, N.V. (1971) Crystal structure of innelite, Na2Ba3(Ba, K, Mn)(Ca, Ba)Ti(TiO2)2(Si2O7)2(SO4)2 . Soviet Physics Crystallography, 16, 65–69.Google Scholar
Christiansen, C.C., Johnsen, O. and Makovicky, E. (2003) Crystal chemistry of the rosenbuschite group. The Canadian Mineralogist, 41, 1203–1224.CrossRefGoogle Scholar
Drozdov, Yu.N., Batalieva, N.G., Voronkov, A.A. and Kuz’min, E.A. (1974) Crystal structure of Na11Nb2TiSi4P2O25F. Soviet Physics Doklady, 19, 258–259.Google Scholar
Ercit, T.S., Cooper, M.A. and Hawthorne, F.C. (1998) The crystal structure of vuonnemi t e, Na11Ti4+Nb2(Si2O7)2(PO4)2O3(F, OH), a phosphatebearing sorosilicate of the lomonosovite group. The Canadian Mineralogist, 36, 1311–1320.Google Scholar
Ferraris, G., Ivaldi, G., Khomyakov, A.P., Soboleva, S.V., Belluso, E. and Pavese, A. (1996) Nafertisite, a layer titanosilicate member of a polysomatic series including mica. European Journalof Mineralogy, 8, 241–249.Google Scholar
Ferraris, G., Belluso, E., Gula, A., Soboleva, S.V., Ageeva, O.A. and Borutskii, B.E. (2001) A structural model of the layer titanosilicate bornemanite based on siederozite and lomonosovite modules. The Canadian Mineralogist, 39, 1665–1673.CrossRefGoogle Scholar
Huminicki, D.M.C. and Hawthorne, F.C. (2002) The crystal chemistry of the phosphate minerals. Pp. 123–253 in: Phosphates: Geochemical, Geobiological, and Materials Importance (Kohn, M.J., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry 48, Mineralogical Society of America, Chantilly, VA, and the Geochemical Society, Washington, D.C. Google Scholar
International Tables for X–ray Crystallography (1992) Kluwer Academic Publishers, V.C. Dordrecht, The Netherlands.Google Scholar
Khalilov, A.D. (1989) Refinement of the crystal structure of murmanite and new data on its crystal chemistry properties. Mineralogicheskii Zhurnal, 11, 19–27.(in Russian).Google Scholar
Krivovichev, S.V., Armbruster, T., Yakovenchuk, V.N., Pakhomovsky, Ya.A. and Men’shikov, Yu.P. (2003) Crystal structures of lamprophyllite–2M and lamprophyllite– 2O from the Lovozero alkaline massif, Kola peninsula, Russia. European Journalof Mineralogy, 15, 711–718.Google Scholar
Men’shikov, Yu.P., Bussen, I.V., Goiko, E.A., Zabavnikova, N.I., Mer’kov, A.N. and Khomyakov, A.P. (1975) Bornemanite–a new silicophosphate of sodium, titanium, niobium and barium. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 104, 322–326.(in Russian).Google Scholar
Pekov, I.V. (2000) Lovozero Massif. Ocean Pictures Ltd., Moscow, Russia.Google Scholar
Peng, Z., Zhang, J. and Shu, J. (1984) The crystal structure of barytolamprophyllite and orthorhombic lamprophyllite. Kexure Tongbao, 29, 237–241.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) "PAP" (jrZ) procedure for improved quantitative microanalysis. Pp. 104–106 in: Microbeam Analysis. San Francisco Press, San Francisco.Google Scholar
Rastsvetaeva, R.K. and Chukanov, N.V. (1999) Crystal structure of a new high–barium analogue of lamprophyllite with a primitive unit cell. Doklady Chemistry, 368, 228–231.Google Scholar
Rastsvetaeva, R.K. and Dorfman, M.D. (1995) Crystal structure of Ba–lamprophyllite in the isomorphous lamprophyllite–barytolamprophyllite series. Crystallography Reports, 40, 951–954.Google Scholar
Rastsvetaeva, R.K., Sokolova, M.N. and Gusev, A.I. (1990) Refinement of the crystal structure of lamprophyllite. Mineralogicheskii Zhurnal, 12(5), 25–28 (in Russian).Google Scholar
Rastsvetaeva, R.K., Evsyunin, V.G. and Konev, A.A. (1995) Crystal structure of K–barytolamprophyllite. Crystallography Reports, 40, 472–474.Google Scholar
Saf’yanov, Y.N., Vasil’eva, N.O., Golovachev, V.P., Kuz’min, E.A. and Belov, N.V. (1983) Crystal structure of lamprophyllite. Soviet Physics Doklady, 28, 207–209.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar
Sheldrick, G.M. (1997) SHELX–97: Program for the solution and refinement of crystal structures. Siemens Energy and Automation, Madison, WI.Google Scholar
Sheldrick, G.M. (1998) SADABS User Guide. University of Göttingen, Germany.Google Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 1273–1330.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2007) From structure topology to chemical composition. II. Titanium silicates: revision of the crystal structure and chemical formula of delindeite. The Canadian Mineralogist, 45, 1247–1261.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2008) From structure topology to chemical composition. III. Titanium silicates: the crystal chemistry of barytolamprophyllite. The Canadian Mineralogist, 46, 403–412.Google Scholar
Sokolova, E. and Hawthorne, F.C. (2001) The crystal chemistry of the [M3O11–14] trimeric structures: from hyperagpaitic complexes to saline lakes. The Canadian Mineralogist, 39, 1275–1294.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. The Canadian Mineralogist, 42, 797–806.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2008a) From structure topology to chemical composition. V. Titanium silicates: crystal chemistry of nacareniobsite–(Ce). The Canadian Mineralogist (in press).CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2008b) From structure topology to chemical composition. IV. Titanium silicates: the orthorhombic polytype of nabalamprophyllite from Lovozero massif, Kola Peninsula, Russia. The Canadian Mineralogist (in press).Google Scholar
Sokolova, E., Hawthorne, F.C. and Khomyakov, A.P. (2005) Polyphite and sobolevite: revision of their crystal structures. The Canadian Mineralogist, 43, 1527–1544.CrossRefGoogle Scholar
Woodrow, P.J. (1964) Crystal structure of lamprophyllite. Nature, 204, 375.CrossRefGoogle Scholar
Yvon, K., Jeitschko, W. and Parthé, E. (1977) Lazy Pulverix, a computer program for calculating X–ray and neutron diffraction powder patterns. Journalof Applied Crystallography, 10, 73–74.Google Scholar